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Light Field Planar Homography and Its Application

Qi Zhang, Xue Wang, and Qing Wang

School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China

ABSTRACT

Light field planar homography is essential for light field camera calibration and light field raw data rectification.
However, most previous researches assume light field camera as pinhole camera array and deduce the planar
homography matrix of sub-aperture image, which is analogous to traditional method. In this paper, we regard
light field as a whole and present a novel light field planar homography matrix based on multi-projection-center
(MPC) model. The projections of point, line and conic are exploited based on light field planar homography.
In addition, a camera calibration method and a homography estimation are proposed to verify the light field
planar homography. Experimental results on light field datasets have verified the performance of the proposed
methods.

Keywords: Light field camera, planar homography, homography estimation, camera calibration

1. INTRODUCTION

In contrast to conventional camera which captures the 2D projection of a 3D scene, a hand-held light field
camera1,2 records both spatial as well as angular information of rays in a 3D scene. Based on the angular
sampling of rays, researches on applications using light field camera have garnered interest, such as refocusing3

and free-viewpoint roaming. However, the performance of hand-held light field camera is limited by the trade-off
between the angular resolution and spatial resolution and narrow baseline in light field. In order to overcome
these disadvantages, several applications using multiple light field cameras are proposed. Light field registration
methods4–6 are presented to register multiple light field cameras and reconstruct the 3D scene. In addition, light
field camera calibration,7–11 light field panorama12 and light field stitching methods13,14 are also interesting
applications.

It is widely known that homography estimation plays an important role in the computer vision. The purpose
of homography estimation is to reconstruct the mapping matrix between different coordinates.15 Consider the
fact that the traditional calibration pattern is the planar pattern, it is vital to estimate planar homography matrix
between image plane and calibration pattern. In order to recover the planar homography matrix, correspondences
are need. In general, there are three traditional types of planar patterns for homography estimation and camera
calibration, i.e., points, lines and conics. Previous researches7–9,11 usually utilize corner points or line features
on the calibration pattern to estimate mapping matrix and calibrate light field camera. Bok et al.8 directly
detect line features from the raw data and establish a geometric mapping matrix between calibration pattern
and micro-lens image for light field camera calibration. In addition, Zhang et al. present a multi-projection-
center (MPC) model with 6 intrinsic parameters for light field camera, including traditional and focused light
field camera. A 3D mapping matrix is derived for describing the relationship between light field coordinates
and camera coordinates. And then the light field camera is calibrated by recovering the 3D mapping matrix.
What’s more, in order to represent the ray sampling and transformation among light field cameras, Zhang et
al.11 present a homogeneous 6 × 6 mapping matrix with 6 intrinsic parameters for light field camera. A linear
ray-ray constraint is then deduced to estimate the mapping matrix and then calibrate light field camera. On
the other hand, Zhang et al.5 propose a ray-plane geometric mapping matrix between two light fields, and then
recover light field poses and conduct bundle adjustment based on line-line correspondences.
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However, several open issues still remain. It is difficult to extract accurate locations of corners due to the
effect of noise and the quality of sub-aperture images. On the other hand, in view of the fact that line features
are extracted from the low resolution micro-lens images in raw data, the precision of the line features cannot
be ensured. Consequently, compared with corner points and line features, conics have two advantages: one is
that the conic is well studied in mathematics and can be simply represented by a 3× 3 matrix, the other is that
conics can be detected and estimated robustly by existing algorithms. Conics have been utilized to calibrate
conventional camera over decades. Huang et al.16 propose properties of the common self-polar triangle of
concentric circles to estimate the intrinsic parameters of traditional camera. In addition, Huang et al.17 explore
the location features of the common self-polar triangle of separate conics for homography estimation. However,
a few attentions are drawn to light field planar homography estimation. Zhang et al.10 propose the property
and reconstruction of common self-polar triangle with respect to concentric circle and ellipse. Making use of
this property, the imaged conic center and vanishing line of sub-aperture image can be recovered simultaneously.
This property can also be used to estimate the intrinsic and extrinsic parameters of light field camera.

In this paper, instead of the checkerboard, a concentric conics calibration pattern with known size (i.e. a
circle and a ellipse with the same center) for light field camera calibration. Based on the MPC model, we
first exploit the light field planar homography matrices among light field coordinates, camera coordinates and
world coordinates. Then, under a point homography transformation, the line and the conic transformation
are deduced. According to the conic homography and the property of common self-polar triangle, a light field
camera calibration and a light field homography estimation based on concentric conics are proposed. Finally, we
illustrate empirical performances in calibrating light field camera and estimating the homography between two
light fields.

Our main contributions are:

1) Light field planar homography matrices among light field coordinates, camera coordinates and world
coordinates are exploited.

2) A light field camera calibration algorithm and a homography estimation method between light fields are
proposed.

2. PRELIMINARIES

2.1 MPC Model

Light field camera, especially micro-lens array assembled inside, which are innovated from traditional 2D camera,
record the 3D world in different but similar rays. With the shifted view, light field camera maps the 3D world
to many sub-aperture images. As we all know, light field can be parameterized as a relative two-parallel-plane
coordinates18 in general. In prior work, according to the MPC model which is proposed to describe light field
camera, a 3D point X = (X,Y, Z)> is mapped to the relative pixel (x, y) of the image plane in the view point
(s, t) of the view plane,9

λ
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where the distance between the two-parallel-plane is normalized as 1 unit to describe the ray (s, t, x, y) in camera
coordinates. This is analogous to classical projective camera model with projection center at (s, t, 0) and principal
axis paralleling to the Z-axis.

A normalized undistorted ray (s, t, x, y) in camera coordinates can be transformed from a ray captured by
light field camera in light field coordinates through a homogeneous matrix D ∈ R5×5,9
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where (ki, kj , ku, kv, u0, v0) are intrinsic parameters of a light field camera. (ki, kj) are scale factors for s and t
axes in the view plane and (ku, kv) for x and y axes in the image plane respectively. (−u0/ku,−v0/kv) represent
the coordinates of principal point in the sub-aperture image.

According to Eq. (1), it is known that at least two rays from one point in space enable 3D reconstruction.
The projective transformation between 3D points reconstructed by rays in different coordinates (i.e. light field
coordinates, camera coordinates) is derived by Eq. (2), Xd

Yd
Zd

 =

 1/ki 0 −u0/ki
0 1/kj −v0/kj
0 0 ku/ki


︸ ︷︷ ︸

K

 X
Y
Z

 , (3)

where K denotes the intrinsic matrix which describes the transformation between light field coordinates and
camera coordinates. X = (X,Y, Z)> is the 3D scene point reconstructed by rays (s, t, x, y) in camera coordinates,
Xd = (Xd, Yd, Zd)> is the 3D scene point reconstructed by rays (i, j, u, v) in light field coordinates.

In addition, consider Xw denoting the scene point in world coordinates, the transformation between world and
camera coordinates is described by a rotation matrix R∈SO(3) and a translation vector t = (tx, ty, tz)> ∈R3,
formulated as X = RXw+t. Hence, the projective matrix P between light field coordinates and world coordinates
can be written as,

Xd = K
[
R t

]︸ ︷︷ ︸
P

[
Xw

1

]
. (4)

2.2 Common Self-polar Triangle of Concentric Conics

Compared with point and line, conic is well studied in mathematics and easy to be represented by matrix.
Consequently, we utilize the conic features for homography estimation between two light fields. We first briefly
introduce the notations and property of common self-polar shared by concentric conics. In addition, the recon-
struction of common self-polar triangle is proposed for light field homography estimation and light field camera
calibration.

According to the notations,15 a point x and a conic C define a line l = Cx which is described as pole-polar
relationship. The line l is defined as the polar of x with respect to C, and the point x denotes the pole of l
with respect to C. If the poles of a conic form the vertices of a triangle and their respective polars form its
opposite sides, it is defined as a self-polar triangle. A self-polar which is shared by several conics is what we
called common self-polar triangle. The property of common self-polar triangle with respect to concentric conics
is illustrated,10

Property 1. The concentric circle and ellipse have and only have one common self-polar triangle which is right
triangle. The three sides of this common self-polar triangle are major axis, minor axis and the line
at infinity.

According to the definition of common self-polar triangle, we can reconstruct the common self-polar triangle
which is common to the circle C1 and ellipse C2. Consider point x and line l denoting the common pole-polars
of C1 and C2. The following relationships should be satisfied:

x = C−11 l and x = λC−12 l, (5)

where λ is a scale factor. Simplifying these relationships in Eq. (5), we obtain
(
λC−12 −C−11

)
l = 0. By

multiplying C2 on both sides, we get the following equation,(
λI−C2C

−1
1

)
l = 0. (6)

The solutions of Eq. (6) are three eigenvectors with different eigenvalues of C2C
−1
1 . What’s more, these

eigenvectors are also the common polars of point x with respect to circle C1 and ellipse C2. According to the
Property 1, these polars are three special sides of common self-polar triangle, i.e. major axis, minor axis and
the line at infinity. Similarly, we can also derive the vertices fo the common self-polar triangle by computing the
eigenvectors of C−12 C1.
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3. LIGHT FIELD PLANAR HOMOGRAPHY

According to the MPC model, light field camera is assumed as a pinhole camera array. In this framework, a
light field camera is described by the set of rays sampled by a collection of perspective cameras. The light field
essentially represents a set of rays come from scene points. Consequently, we consider that Eq. (4) is sufficient to
represent light field. Eq. (4) is a map from a point in world coordinates to a point in light field coordinates. We
have the freedom to choose the world coordinates. Suppose it is chosen such that the OXwYw corresponds to a
plane π in the scene, so that points on the scene plane have Zw = 0. Then, the light field planar homography is
given by

Xd = K
[
r1 r2 t

]︸ ︷︷ ︸
H

 Xw

Yw
1

 , (7)

so that the map between points Xw = (Xw, Yw, 1)> on plane π and their point Xd recorded by light field camera
is a general planar homography.

Eq. (7) describe the planar homography between light field coordinates and world coordinates. It is well-
known that light field camera is assumed as a pinhole camera array. Considered the fact that the transform
between sub-aperture images within same light field is merely a translation tij = (−i,−j, 0)> without rotation,
according to the planar homography matrix between 2D pinhole cameras15 and MPC model,9 we can also derive
the planar homography between views in the light field, u

v
1

 ∼ (I + tijn
>/d

)︸ ︷︷ ︸
Hij

Xd, (8)

where ∼ refers to equality up to a scale, n and d denote the scene plane which can be computed by the vanishing
line of light field. Then, substituting Eq. (8) into Eq. (7), there is a planar homography between scene plane and
sub-aperture images,

u ∼ HijHXw. (9)

If a 3D line lw on the scene plane π, the line transformation between the projective line l on the sub-aperture
image of view (i, j) and scene line lw is,

l ∼ H−>ij H−>lw. (10)

Similarly, we can also derive the transformation between projective conic C̃ on the sub-aperture image of view
(i, j) and conic Cw on the scene plane,

C̃ ∼ H−>ij H−>CwH
−1H−1ij . (11)

We call this constraint light field planar homography and we show in the following section how to use the planar
homography of conic for light field camera calibration and homography estimation between two light fields.

4. CAMERA CALIBRATION AND HOMOGRAPHY ESTIMATION

4.1 Light Field Camera Calibration

Let the images of two concentric conics under the conic homography matrix Eq. (11) be C̃1 and C̃2 on the view
(i, j), we have

H>ijC̃1Hij ∼ H−>Cw1H
−1 and H>ijC̃2Hij ∼ H−>Cw2H

−1. (12)

According to the Property 1, line at infinity can be calculated by the product C2C
−1
1 . Therefore, it is easy

to obtain the vanishing line of light field and compute the planar homography Hij . In addition, by computing
the product C2C

−1
1 , we also have

H>ij

(
C̃2C̃

−1
1

)
Hij ∼ H−>

(
Cw2C

−1
w1

)
H>. (13)
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As illustrated in Eq. (13), C̃2C̃
−1
1 is the similar matrix of Cw2C

−1
w1, which means they have the same eigenvalues.

Consider λ and lw denoting the eigenvalue and eigenvector of Cw2C
−1
w1 respectively, according to the property of

similarity transformation and Eq. (10), λ and H−>ij H−>lw are eigenvalue and eigenvector of C̃2C̃
−1
1 respectively.

Based on this observation, we can find three line-line correspondences by matching the eigenvalues. In order to
estimate the light field homography matrix H, at least four line-line correspondences are needed.15 Then, we
add the lines through intersecting points at the conics with the sides of self-polar triangle to estimate H.

In order to derive intrinsic parameters, we abbreviate with [h1,h2,h3] of H. Utilizing the orthogonality and
identity of r1 and r2, we have

h>1 K
−>K−1h2 = 0,

h>1 K
−>K−1h1 = h>2 K

−>K−1h2.
(14)

Consider a symmetric matrix B denoting K−>K−1 which has four degree of freedom, Eq. (14) can be rewritten
as follows, [

h11h12 h11h32 + h12h31 h21h22 h21h32 + h22h31 h31h32
h211 − h212 2(h11h31 − h12h32) h221 − h222 2(h21h31 − h22h32) h231 − h232

]
b = 0, (15)

where hij refers to the element on the i−th row and j−th column of H. b denotes the vector (b11, b13, b22, b23, b33)>.
By stacking at least two such equations (from two poses) as Eq. (15) in view of the degree of freedom, we can
reconstruct the B with a scale factor. Furthermore, it is easy to utilize Cholesky factorization19 to solve K and
obtain intrinsic parameters (ku, kv, u0, v0). In addition, extrinsic parameters in different poses can be calculated
as follows,

α =
1

2

(∥∥∥K̂−1h1

∥∥∥+
∥∥∥K̂−1h2

∥∥∥) ,
r1 =

1

α
K̂−1h1,

r2 =
1

α
K̂−1h2,

r3 = r1 × r2,

t =
1

α
K̂−1h3,

(16)

where K̂ refers to the estimation of K. ‖ · ‖ denotes L2 norm. In order to estimate the rest intrinsic parameters
ki and kj , we first calculate the center point (xo, yo) of concentric circle and ellipse in the camera coordinate
according to the Property 1. Then, based on Eqs. (2) and (8), we have[

i 0
0 j

] [
ki
kj

]
=

[
tx/tz − xo
ty/tz − yo

]
. (17)

Stacking the measurements in different poses, we can obtain a unique non-zeros solution for ki and kj .

The most common distortion model of light field camera is the radial distortion shifted with the view (s, t).9

Compared with radial distortion coefficient (k1, k2) of traditional camera, k3 and k4 are added to represent the
distortion affected by the shifted view. Once we obtain the initial linear solution computed by Eqs. (15), (16)
and (17), a cost function, based on Sampson error15 and Eqs. (9) and ( 12) is proposed to conduct the non-linear
optimization, ∑ ∣∣∣u (kd

)>
C (P,R, t,Cw)u

(
kd
)∣∣∣

2 ‖C (P,R, t,Cw)u (kd)‖
, (18)

where u refers to the sub-aperture image point on conic, P denotes the light field camera parameters, kd is
the distortion coefficient, R, t refer to the extrinsic parameters and Cw denotes the conic matrix in the world
coordinates. This non-linear cost function can be solved using Levenberg-Marquardt algorithm based on trust
region method.20 Matlab’s lsqnonlin is utilized to carry out the non-linear optimization. The light field calibration
algorithm is summarized in Alg 1.
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Algorithm 1 Light Field Camera Calibration Algorithm.

Input: Concentric conics Cw1 and Cw2 and projected conics C̃1 and C̃2 on each view.
Output: Intrinsic parameters P = (ki, kj , ku, kv, u0, v0);

Extrinsic parameters Rp, tp(1≤p≤P );
Distortion vector kd = (k1, k2, k3, k4)>.

1: for p = 1 to P do
2: for each view (i, j) do

3: Obtain the eigenvectors of C̃2C̃
−1
1 and planar homography matrix Hij . . Eqs. (8) and (11)

4: end for
5: Find the line-line correspondences by matching the eigenvalues of C̃2C̃

−1
1 and Cw2C

−1
w1. . Eq. (10)

6: Solve light field homography matrix H. . Eq. (13)
7: end for
8: Obtain four intrinsic parameters (ku, kv, u0, v0) by Cholesky factorization. . Eq. (15)
9: for p = 1 to P do

10: Get extrinsic parameters Rp and tp. . Eq. (16)
11: end for
12: Obtain other two intrinsic parameters (ki, kj). . Eq. (17)
13: Initialize distortion coefficient. d = (0, 0, 0, 0)>

14: Create the cost function based on Sampson error and obtain optimized results using nonlinear LM algorithm.

4.2 Light Field Homography Estimation

Similarly, consider the sub-aperture images of two concentric conics Cw1 and Cw2 on the view (i, j) of first light

field being C̃11 and C̃21 and the images on the view (m,n) of second light field being C̃12 and C̃22. Let the
planar transformation from the first light field to the second one is H. According to Eq. 11, we have

H>mnC̃12Hmn ∼ H−>H>ijC̃11HijH
−1 and H>mnC̃22Hmn ∼ H−>H>ijC̃21HijH

−1. (19)

Based on the Property 1, we also obtain,

H>mn

(
C̃22C̃

−1
12

)
Hmn ∼ H−>H>ij

(
C̃21C̃

−1
11

)
HijH

−1, (20)

which illustrates that C̃22C̃
−1
12 is the similar matrix of C̃21C̃

−1
11 . They all have the same eigenvalues. According

to the method provided in Sec. 4.1, we can also find the line-line correspondence by matching the eigenvalues of
C̃21C̃

−1
11 and C̃22C̃

−1
12 and estimate the homography matrix H between two light fields by existing algorithms.15

In addition, the estimated homography matrix solved by linear method Eq. (20) is refined via non-linear
optimization. We define a cost function based on Sampson distance and Eq. (19) to optimize results,

∑ ∣∣∣u>2 (m,n)H−>C̃1 (i, j)H−1u2 (m,n)
∣∣∣

2
∥∥∥H−>C̃1 (i, j)H−1u2 (m,n)

∥∥∥ +

∣∣∣u>1 (i, j)H>C̃2 (m,n)Hu1 (i, j)
∣∣∣

2
∥∥∥H>C̃2 (m,n)Hu1 (i, j)

∥∥∥ . (21)

The light field calibration algorithm is summarized in Alg 2.

5. EXPERIMENTS AND RESULTS

5.1 Light Field Camera Calibration

In order to evaluate the performance of the proposed light field calibration algorithm, we carry out the experi-
ments on both simulated data and real scene. We first simulate a light field camera which is same as the baseline
method10 (i.e. ki = 1.4e− 4, kj = 1.5e− 4, ku = 2.0e− 3, kv = 1.9e− 3, u0 = −0.59, v0 = −0.52). The model
pattern is conic pattern containing two concentric circle and ellipse. The radius of circle is 0.05m. The major
and minor axes of ellipse are 0.13m and 0.07m. In this experiment, we employ the measurement of 3 poses and
7×7 views to demonstrate the robustness of our calibration algorithm. We choose 100 sub-aperture image points
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Algorithm 2 Light Field Homography Estimation Algorithm.

Input: Projected conics C̃11 and C̃21 on each view of the first light field;
Projected conics C̃12 and C̃22 on each view of the second light field.

Output: Homography matrix H between two light fields.
1: for each view (i, j) of first light field and each view (m,n) of second light field do

2: Obtain the eigenvectors of C̃21C̃
−1
11 , C̃22C̃

−1
12 and planar homography matrix Hij , Hmn. . Eq. (8)

3: end for
4: Find the line-line correspondences by matching the eigenvalues of C̃21C̃

−1
11 and C̃22C̃

−1
12 . . Eq. (10)

5: Solve homography matrix H between two light fields. . Eq. (20)
6: Create the cost function based on Sampson error and obtain optimized results using nonlinear LM algorithm.

on each conic. Gaussian noise with zero-mean and σ standard deviation is added to these images points. We
vary σ from 0.1 to 1.5 pixels with a 0.1 pixel step. For each noise level, 150 independent trials are conducted.
The accuracy is evaluated by the average of relative errors with ground truth. As illustrated in Fig. 1, it is
demonstrated the errors almost linearly increase with noise level, which exhibits that the proposed algorithm is
robust to higher noise level.
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Figure 1. Performance evaluation of intrinsic parameters on the simulated data with different levels of noise σ.

We also verify the calibration method on real scene light fields collected with the baseline method.10 The
sub-aperture images are obtained by the method.7 The Canny edge detector21 is utilized to detect the conic
from sub-aperture images, and conics are fitted to these images using a least squares conic fitting algorithm. For
every different pose, the middle 11× 11 sub-aperture images are utilized similar to the compared method.10 We
than use the proposed method (Alg. 1) to calibrate light field camera. Tab. 1 summarizes the root mean square
(RMS) Sampson errors of initialization, optimization without and with distortion compared with the method
proposed by Zhang et al.10 As illustrated in Tab. 1, the proposed method obtains similar Sampson errors on
the item of initial solution compared with the state-of-the-art method, which verified the effectiveness of linear
initial solution for both intrinsic and extrinsic parameters. From the results, we find both methods have small
different, which further exhibits the proposed method is robustness and effectiveness. In addition, the results of
pose estimation on the datasets are illustrated in Fig. 2

Table 1. RMS Sampson errors of initialization, optimizations without and with distortion (unit: pixel).

Illum-1 (8) Illum-2 (10) Illum-3 (9) Illum-4 (12)

Initial
Zhang10 5.2401 6.6361 4.1867 5.0426
Ours 5.0497 6.0590 3.9557 5.1443

Opt. w/o Zhang10 1.1173 1.1081 0.7818 0.7838
distortion Ours 1.0519 1.0428 0.7285 0.7433

Opt. with Zhang10 0.1746 0.1778 0.2879 0.2889
distortion Ours 0.1759 0.1809 0.2482 0.2908

The (N) denotes the number of light fields used for calibration.
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Figure 2. Pose estimation results of the light field datasets.

(a) Reference view (b) Central view of first light filed (c) Central view of second light filed

(d) Reference view (e) Central view of first light filed (f) Central view of second light filed

Figure 3. The homography rectification results. The first column shows the central view of reference light field. The
second and third columns show the original and rectified central view of the first light field. The forth and fifth columns
show the original and rectified central view of the second light field.

5.2 Light Field Homography Estimation

We conduct two real experiments to certify the performance of the proposed light field homography estimation
method. We capture three light fields using the two concentric conics pattern and three concentric conics pattern
respectively. It is noticed that there exists distinct sidtortion in the Illum camera. We first utilize the proposed
method in Sec. 5.1 for distortion rectification. Similarly, the conic matrices on sub-aperture images are obtained
by Canny edge detector. We than utilize our presented approach Alg. 2 to compute the homography for light
fields. Finally, we warp the light field back to the reference view. Fig. 3 illustrate the central view of the reference
light field and the results.

6. CONCLUSION

In this paper, based on the property of concentric conics, a novel light field camera calibration method and a
homography matrix estimation between two light fields are proposed. Compared with point and line pattern,
conic pattern is more simply and robustness. We first explore the light field planar homography matrices among
light field coordinates, camera coordinates and world coordinates. According to the conic homography matrix
and common self-polar triangle, four line-line correspondences can be uniquely determined. Than, a linear
method for light field camera calibration and a linear method for homography estimation are presented. Finally,
qualitative and quantitative analyses on extensive experiments verify the performance of the proposed methods.
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