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ABSTRACT

Light field cameras have been rapidly developed and are likely to appear in mobile devices in near future. It is
essential to develop efficient and robust depth estimation algorithm for mobile applications. However, existing
methods are either slow or lack of adaptability to occlusion such that they are not suitable to mobile computing
platform. In this paper, we present the generalized EPI representation in light field and formulate it using two
linear functions. By combining it with the light field occlusion theory, a highly efficient and anti-occlusion depth
estimation algorithm is proposed. Our algorithm outperforms the previous local method, especially in occlusion
areas. Experimental results on public light field datasets have demonstrated the effectiveness and efficiency of
the proposed algorithm.
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1. INTRODUCTION

Light field cameras from Lytro' and Raytrix? have been rapidly developed and are likely to appear in mobile
devices in near future. It is essential to develop efficient and robust depth estimation algorithms for mobile
applications.? 7 However, existing methods are either slow or lack of adaptability to occlusion such that they
are not suitable to mobile computing platform.

Wanner et al.® applied structure tensor to analyze the horizontal and vertical Epipolar Plane Images (EPI)
in light field, and measured the reliability of estimated depth using the coherence of structure tensor. However,
in occlusion areas, the tensor field becomes too random to estimate, and structure tensor tends to produce wrong
estimation but assigns high reliability,” which leads to over smooth results in occlusion boundaries.

Yu et al.'® encoded the constraints of 3D lines and introduced Line Assisted Graph Cuts (LAGC) to improve
depth estimation. However, the 3D lines are partitioned into small and incoherent segments in occlusion which
leads to wrong estimation.

Based on the analysis of advantages and disadvantages of the defocus and correspondence cues in light
field, Tao et al.'' proposed to optimize depth map by combining these two cues in a Markov Random Field
framework.'? However, the light field is under sampling in angular space in occlusion areas, and the defocus and
correspondence cues failed in these areas.

Based on Tao et al’s work,"! Wang et al.'®> analyzed the formation of the occlusion in light field, and

discovered the consistency between spatial space and angular space in occluded boundaries in a local patch.
They selected the un-occluded views according to the edge orientation in the spatial patch, and modified the
previous algorithm using the consistency of multiple cues in the un-occluded views. Experimental results have
proven that this method can achieve the best results in occlusion boundaries. However, the refocus operation'*
for constructing Disparity Space Image (DSI) is time-consuming, and inappropriate regularization parameters
will lead to over smooth results in occlusion boundaries (see Fig. 5,6).

In this paper, we propose a framework of Generalized Epipolar Plane Image (GEPI) representation in light
field. In this framework, the EPI is obtained by shearing a 2D slice in 4D space while traditional EPI is just
a special case sheared in horizontal or vertical direction. We formulate the GEPI using two linear functions in
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mathematics, and the 2D slice in any angle which satisfies the conditions can be called a GEPI. Theoretically,
each GEPI can be used for depth estimation, however it does not hold due to the occlusion. By modeling the
occlusion in light field, there is at least one GEPI representation which is free or nearly free of occlusion (it is
called occlusion-free GEPI later). We propose to select the best occlusion-free GEPI in light field, and present
an efficient local depth estimation algorithm.

The rest of the paper is organized as follows: In section 2, the background of structure tensor and occlusion
model are reviewed. In section 3, we define the GEPI representation in light field and introduce the method of
GEPI selection and depth estimation. The experimental results are demonstrated in section 4. We summarize
the paper and give the suggestions for future work in section 5.

2. BACKGROUND

In this section, we review the robust local depth estimation and the occlusion model in light field.

2.1 Robust local depth estimation

Light field has a simplified representation of radiance by a 4D function f(x,y,u,v), where the dimensions (z,y),
(u,v) describe the light distribution in spatial and angular space respectively.'® When we fix one angular and
spatial dimension (z*,u*) or (y*,v*), the EPI representation of light field appears. Since the slope of EPT line
has a linear relationship with the depth,'® depth estimation can be converted to the slope analysis in EPI.

We use the structure tensor to analyze the slopes of EPI lines,
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where G, represents a Gaussian smoothing operator, and S,,S, represent the gradient of EPI in x and y axis
respectively.

The slope k of EPI line is estimated using
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and the reliability is measured by the coherence of the structure tensor
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2.2 Occlusion model

Wang et al.'® have analyzed the formation of occlusion in light field. By assuming the single-occlusion among
all views and looking at a spatial patch small enough, the occlusion edge can be approximated by a straight line.

Considering a pixel (Xo, Yo, F') on the focal plane (the left image in Fig. 1(a)), and an occluder intersects at
(Xo, Y0, Z0) (0 < Zy < F). The directional vector of the occluder boundary in the plane Z = Zj is

&y = (kx, . ky,) = (X1 — Xo,Y1 — Yp). (4)

The golden areas in Fig. 1 denote the occluded areas. Without loss of generality, we assume ky, > 0.

For any other pixels (X;,Y;, F') on the focal plane, it will be observed by the view (ug,vp) iff it meets the
following inequality,
le(Xi_XO)_kX1(}/i_YO) <07i:1727"'7n' (5)

We then project these inequalities from the world coordinate system to image coordinate system (the right
image in the Fig. 1(a)). The corresponding directional vector of €}y is €t = (ku,, ky,) and we have e} = A&}y,
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Figure 1. The light field camera model with occlusion. The left image in (a) denotes the the image captured from the
view (ug,v0), and the right image in (a) is a local patch centered at (xo,yo) from the view (uo,vo). The left image in (b)
denotes the light field is refocused in depth F', and only views upon the green plane can see the point (Xo, Yo, F'), the
images formed from other views describe the occluder. The right image in (b) is the angular patch of the point (xo,yo).

where A\ is a scale factor to denote the scaling relationship between the world and image coordinate systems.
For any other points (z;,y;) on the image, it is a background point iff

kyl (xl - xO) - kx1 (yl - yO) < 0. (6)

Then considering the main lens plane (the left image in Fig. 1(b). The light field is refocused to the depth
F). For any other views (u;,v;) on the main lens plane, it can capture the pixel (Xo, Yy, F) iff

k"ul (’U;z — UQ) — kul (’Ui — ’Uo) < 0, (7)
where &4 = (ky,, ky,) and &4 = Aaé}. g is a scale factor to denote the scaling relationship between the image
and angle coordinate systems.

Revisiting Eqns. 6 and 7, it is noticed that the occluded views in angular space has the same distribution
with the occluder in spatial space. Furthermore, the edge orientation in the angular space can be predicted using
the edge in the spatial space.

3. THE PROPOSED METHOD
3.1 Generalized EPI representations in light field

In traditional multi-view stereo, the EPI is constructed by taking a regularly spaced series of images from a
linear moving camera system, and the moving direction can be arbitrary. However, existed EPI representations®
in light field are only limited in the horizontal and vertical directions, ignoring other directions.

For a given point p = (z*,y*,u*,v*) in 4D light field space, there are many 2D slices containing it and each
slice can be called a Generalized EPI (GEPI) iff it satisfies the following two equalities

alu —u*) +blv—v*) =0,

ale - 2%) + by — y*) =0, ®)
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Figure 2. The GEPI representations in light field. (a) shows how GEPIs are obtained in different directions. (b) shows
4 GEPIs in four directions. It is noticed there is no occlusion in —45° GEPI, as the occlusion boundary near p has the
same orientation as GEPI direction.
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Figure 3. The property of Fourier transformation for EPI. (a) is the EPI for the scene with constant depth, all EPI lines
has the same slope ko. (b) is the fourier transform of (a), it is noticed all energy concentrate to the line Q, = koQs. (c)
is the EPI with occlusion. The slope of the foreground is k1. (d) is the fourier transform of (c), it can be seen the energy
from background concentrate to €2, = EOQI, and the energy from from foreground concentrate to 2, = 7{:\1995.

where a and b are real numbers to describe the moving direction of camera.

It is noticed that the traditional horizontal and vertical EPI representations in 4D light field are just two
special cases of GEPI representation, i.e., (a = 0,b = 1) and (a = 1,b = 0) respectively. Furthermore, when (a =
1,b = —1), diagonal (45°) EPI appears, and reverse diagonal (—45°) EPI is obtained by setting (a = 1,b = 1).
The GEPI obtention in different directions can be seen in Fig. 2(a), and the examples are shown in Fig. 2(b).
In a word, GEPI representation can describe the moving camera system in arbitrary direction in light field.

3.2 Robust local anti-occlusion depth estimation method

As described in the Sec. 2.2, the edge in the angular space has the same orientation with the edge in the spatial
space in occluded areas. A straightforward depth estimation is to select occlusion-free GEPI (—45° GEPI in
Fig. 2(b)) according to the orientation of edge in the spatial space. However, it will fail in the textured occlusion
boundaries since there are conflicts between the orientations of the texture edges and occlusion boundaries. Thus,
it is difficult to distinguish the texture edges and occlusion boundaries without an accurate disparity map.

As a basic property of Fourier transformation, a linear symmetric image has a Fourier transform concentrated
to a line passing the coordinate origin, and a line in Fourier domain is perpendicular to all lines in the spatial
domain'” (Fig. 3(a), 3(b)). Based on this feature, the structure tensor method fits a least square error line in
the Fourier domain of the local EPI, and it is suitable for most situations (Fig. 3(a), 3(b)) except occlusions
(Fig. 3(c), 3(d)).

In occlusion areas (Fig. 3(c) and 3(d)), the background is always occluded by the foreground. Since the
foreground has a smaller depth than background, the slope of foreground k; is always smaller than the slope of
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Figure 4. The conflicts between the orientation from texture edge and occlusion boundaries. (a)-(d) are the depth maps
obtained from the horizontal, vertical, diagonal (45°) and reverse diagonal (—45°) GEPIs respectively. It is noticed the
GEPI which has a same orientation with the occlusion boundary yield sharper occlusion boundaries. (e) is the edge map.
(f) is the depth map selected from the previous 4 results according to the orientations of edges. The conflicts between the
orientations from textures and occlusion boundaries lead to the poor results in occlusion boundaries.

background kg in EPIL. After the Fourier transformation, the energy of the foreground and background concen-
trates to two lines, i.e., 0, = k:OQ and Q, = le Supposing the fitting line has a slope k;* then k* meets the
following inequalities,

k< k< ko. (9)
As the line in Fourier domain is perpendicular to lines in the spatial domain, i.e., k k= —1, the estimated slope
k* meets the following inequalities,

ki < k* < ko. (10)

In other words, the estimated depth in occlusion areas is always less than or equal to the ground truth of the
depth. That is the reason why structure tensor yields over smooth results in occlusion boundaries (see Fig. 4).
With this feature, the following proposition is obtained

Proposition 1. The depth estimated from occlusion-free EPI is always larger than or equal to non-occlusion-free
EPIs in occlusion areas.

Using this proposition, we propose a robust local anti-occlusion depth estimation method in Algo. 1. At first,
we estimate N depth maps D;,i =1, ..., N from the GEPI representations using structure tensor. Then for each
possible occlusion point p * , the largest value D*(p) from all candidate depth D;(p),i = 1,..., N, is assigned to
it final depth. For other points, the depths are selected according to the reliability of structure tensor.

Algorithm 1 The proposed robust local anti-occlusion depth estimation method
Input:
4D light field LF
Output:
The depth map D* of the central view
Process:
(D;, R;)=StructureTensor(GEPI;), i = 1,...,N.
D*(p) = max D;(p), if p is a possible occlusion point.
D*(p) = D;(p), where j = arg max; R;, if p is not an occlusion point.

4. EXPERIMENTAL RESULTS

We compare the proposed method with the state-of-the-art methods in light field, which include the globally
consistent depth labeling (GCDL) by Wanner et al.,® the line assisted graph cut (LAGC) by Yu et al.,'° the depth

*The occlusion map is an dilated edge map here. Since an occlusion point is an edge point but an edge point may not
be an occlusion point.
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from defocus and correspondence (DFC) by Tao et al.,'* and the occlusion-aware depth estimation (OADE) by
Wang et al.'® All results come from their published codes or executable files. It is noted that the DFC method
from Tao et al. is only compared in the real scenes since the interface in only for the Lytro lfp files.

4.1 Depth Maps in Synthetic Scenes

The most popular light field datasets LFBD'® are used to evaluate the quantitative performance of the proposed
method. These datasets contain both synthetic and real scenes with the ground truth. Considering the light
field is a sampling under a discrete 9 x 9 pattern, the number of GEPIs, N, is set to 4 to ensure that the angular
sampling is sufficient to construct an EPI.

Fig. 5 shows qualitative comparisons in synthetic scenes. It can be seen our method yields more clear occlusion
boundaries than the state-of-the-arts. Our method retains the details for small occlusion boundaries, such as
the twig and leaf in the Mona, and the butterfly antennae and the leaf in the Papillon. Since the proposed
method is just a local method and no smooth term is applied to regularize the final result, there are some noises
in low-texture areas of the recovered depth map.

The quantitative comparisons are listed in Table 1. It is noticed the RMS error is not the best metric to
measure the performance of our method in occlusion boundaries. For all pixels, the performance of the proposed
method is not worse than the state-of-the-arts. However, the proposed method shows obvious advantages to
the existed methods in occlusion areas. Our method achieves the minimum RMS error in two datasets, and the
ranks in another 2 datasets are 2nd and 3rd.

Table 1. RMS errors of recovered disparity.
GCDL LAGC OADE Ours

all occ all occ all occ all occ

Buddha2 | 0.101 | 0.353 | 0.179 | 0.404 | 0.107 | 0.299 | 0.133 | 0.263
Mona 0.098 | 0.469 | 0.119 | 0.300 | 0.089 | 0.328 | 0.081 | 0.340

Papillon | 0.166 | 0.758 | 0.406 | 0.680 | 0.125 | 0.389 | 0.141 | 0.463
Maria 0.063 | 0.277 | 0.073 | 0.311 | 0.061 | 0.299 | 0.119 | 0.277

4.2 Depth Maps in Real Scenes

Fig. 6 shows the comparisons in real scenes, captured with the Lytro light field camera. The LFtoolbox!? is used
to decode the 1fp files from Lytro camera. The disparity ranges are set to [—1, 1] and the depth levels are set to
100 for all methods. It is noticed the performances of all methods decrease a lot due to the heavy noise in real
scenes captured by Lytro camera. However, our method performs better in occlusion boundaries, especially in
the edges of the leafs in the first, third and fourth rows and the grid lines in the second row.

4.3 Running Times

All methods are evaluated in a same machine, with a 3.4GHz CPU, 24G RAM. The CUDA environment for
GCDL is the GTX1080. For MRF based methods'® 1113 and GCDL,® the labels are set 100 to balance the
performance and the speed. The running time of different methods are listed in Table. 2. To be fair, the
language environments of different methods are also listed in Table. 2. It is noticed our method has the lowest
computing cost since there is no refocus operation in our algorithm.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the GEPI representation in light field and develop an efficient and anti-occlusion depth
estimation method. We find that there is always an occlusion-free GEPI for occlusion point in light field and the
depth estimated from the occlusion-free GEPI is always larger than the depth estimated from others. Utilizing
this discovery, the depth estimation is improved in two steps. First, we estimate several depth maps from different
directional GEPIs. Then, the largest depth value is selected for occlusion point. We have evaluated the method
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Table 2. The running time of different methods. All methods are tested in a 9 x 9 x 378 x 379 color light field.
GCDL LAGC DFC OADE Ours

Time 65s 137min 90s 78s 120s
Language | C++/CUDA | C/C++ | Matlab+C | Matlab+C | Matlab

Figure 5. Recovered depth maps on synthetic scenes. The most left two columns are light field scenes and the ground
truth depth. The middle three columns are the depth maps recovered from GCDL,* LAGC'® and OADE'? respectively.
The most right column is the depth maps by the proposed method.

on synthetic and real scenes. Experimental results have validated our method has high performance in occlusion
boundaries.

Since the proposed method follows the same occlusion model with OADE,!? it fails in small-occlusions and
multi-occluder occlusion. Apart from this, as noticed in Table 1, Fig. 5 and 6, although the method recovers the
thin structures and the occlusion boundaries clearly, it performs not well in low-texture areas since no smooth
term is applied. It is necessary to regularize the depth map with an appropriate smooth term to improve the
performance.
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