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PNRNet: Physically-Inspired Neural Rendering for
Any-to-Any Relighting

Zhongyun Hu™, Ntumba Elie Nsampi

Abstract— Existing any-to-any relighting methods suffer from
the task-aliasing effects and the loss of local details in the image
generation process, such as shading and attached-shadow. In this
paper, we present PNRNet, a novel neural architecture that
decomposes the any-to-any relighting task into three simpler
sub-tasks, i.e. lighting estimation, color temperature transfer,
and lighting direction transfer, to avoid the task-aliasing effects.
These sub-tasks are easy to learn and can be trained with direct
supervisions independently. To better preserve local shading and
attached-shadow details, we propose a parallel multi-scale net-
work that incorporates multiple physical attributes to model local
illuminations for lighting direction transfer. We also introduce a
simple yet effective color temperature transfer network to learn
a pixel-level non-linear function which allows color temperature
adjustment beyond the predefined color temperatures and gen-
eralizes well to real images. Extensive experiments demonstrate
that our proposed approach achieves better results quantitatively
and qualitatively than prior works.

Index Terms— Any-to-any relighting, physical image forma-
tion, neural rendering.

I. INTRODUCTION

HE goal of this paper is to generate a relit image from

the original RGB-D image to match the illumination
setting of the given guide RGB-D image. As shown in Fig. 1,
the inputs consist of a source image of a complex scene
(Fig. 1a) and a guide image under novel lighting (Fig. 1b),
and the output is the relit source image under the novel light-
ing provided by the guide image. Different from traditional
image-based relighting where the target illumination is given
explicitly [1]-[3], the illumination in any-to-any relighting
is implicitly contained in the guide image. This has attracted
much attention because it can benefit many applications when
casual photographers do not have the expertise in lighting,
but the images containing desired illumination settings can be
easily obtained.

Inverse rendering-based relighting methods [4]-[6] explic-
itly recover illumination, geometry and material properties
of the scene, then forward rendering acts on these scene
factors for relighting. However, this is an ill-posed problem,
considering these factors interact in complex ways to form
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images and different combinations of these factors could
produce the same image [7]. In contrast, some learning-based
approaches [2], [8], [9] do not have an explicit inverse render-
ing step for relighting. Instead, a single relighting network is
trained to generate relit images from one or more input images.
In particular, Zhou et al. [9] and Sun et al. [8] propose to
directly relight the input portrait from an implicit neural rep-
resentation in the latent space without explicitly reconstructing
the intrinsic properties. However, these methods do not apply
to any-to-any relighting.

Recently, several learning-based methods [10]-[12] have
been proposed to solve any-to-any relighting successfully. But
there still exist two challenges that need to be addressed. First,
the visual effects of the lighting direction transfer task (e.g.
the shadows in the second row of Fig. 1h) are introduced
in the image generation process where only the temperature
transfer task is involved, which is called the task-aliasing
effect in this paper. In fact, the end-to-end model tends to
learn a generalisable representation consisting of both on-task
and off-task features by integrating relighting of the color
temperature and direction of the light source into one single
model. Second, existing any-to-any relighting methods fail at
preserving the local shading and attached-shadow details. The
main reason is that the commonly adopted encoder-decoder
structure performs down-sampling operations in the encoder to
obtain a larger receptive field to account for global illumination
effects, such as cast shadows and inter-reflections. However,
from the perspective of the physical image formation process,
the down-sampling operations could break the pixel-level local
illumination modeling.

To that end, we propose a novel neural architecture that
decomposes the any-to-any relighting task into three indepen-
dent sub-tasks: lighting estimation, color temperature transfer,
and lighting direction transfer. Thus the task-aliasing effects
in the relit image can be suppressed efficiently rather than
combining both on-task and off-task features into one single
end-to-end model. First, to relight the source image with the
illumination setting of the guide image, we train a network
for estimating the illumination setting which will be fed
into the following sub-tasks. Second, to adjust the color
temperature of the source image, we train a fully-connected
neural network that learns the pixel-level non-linear color
mapping from estimated color temperature. Finally, to preserve
the local shading and attached-shadow details, we train a
parallel multi-scale network that maintains a high-resolution
representation throughout the whole process to model
the pixel-level local illumination using multiple physical
attributes.
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Our contributions can be summarized as follows:

1) We analyze the physical process of image formation
under near-field point light sources and derive its relighting
formulation. Based on the relighting formulation, we propose
to solve any-to-any relighting by learning three functions
sequentially. Each function is modeled as a neural network
that takes into account the characteristics of the respective
physical formation process.

2) We propose two efficient sub-networks that can be
separately plugged into different neural networks for specific
usage. One is a fully-connected neural network for estimating
pixel-level non-linear color temperature mapping. The other
one is a parallel multi-scale lighting direction transfer network
for modeling pixel-level local illumination using multiple
physical attributes.

3) We demonstrate the state-of-the-art performance of the
proposed method on the VIDIT benchmark dataset. More
importantly, our method shows better generalization results on
real data. The code and models are released in order to inspire
more research in this direction.

Il. RELATED WORK
A. Image-Based Relighting

Image-based relighting methods directly reconstruct the
light transport function to relight the objects without an
explicit estimate of the physical attributes of the objects.
Debevec et al. [1] first proposed to relight the objects by
densely sampling the light transport function using thousands
of images. Furthermore, the coherence of the light transport
function [13]-[15] is utilized to relight the objects using
fewer samples. However, these approaches still require hun-
dreds of images, and this acquisition process is very time-
consuming. Recently, driven by the success of deep learning,
Xu et al. [2] used a non-linear CNN-based representation that
exploited correlations in light transport across scenes to relight
the objects with only five images. Meka et al. [3] proposed
a learning-based solution to reconstruct the light transport
function from two spherical gradient images. Such acquisition
systems need to be specially designed to simulate the desired
illumination. Zhou et al. [9] and Sun et al. [8] argued that the
utility was usually limited due to the requirements of multiple
images of the scene under controlled or known illuminations,
deep neural networks with encoder-decoder structures are
proposed to relight the portrait using a single RGB image.
Despite all that, such approaches have often focused on objects
of a specific class (e.g. portraits or human bodies), more
complex scenes should be further considered. What’s more,
they usually represent the incident lighting using environment
maps or spherical harmonics (SH) that are assumed as distant
lighting. As a result, these methods are incapable of rendering
scenes with near-field lighting effects.

B. Inverse Rendering

Inverse rendering is to estimate physical attributes (e.g.,
geometry, reflectance, and illumination) of a scene from
observed appearance. Once the reflectance and illumination
are estimated, the any-to-any relighting problem can be viewed
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as a natural extension of inverse rendering, which is then per-
formed by an additional physically based rendering pipeline.
Traditional inverse rendering [16]-[21] jointly optimize the
scene properties by extensive priors to achieve the set of
values that best explain the observed image. However, directly
optimizing all scene parameters is often a highly under-
constrained problem, which in turn results in severe artifacts
in relighting.

In the past few years, researchers have concentrated on
data-driven approaches for learning priors instead of hand-
crafted priors [22]-[24]. Sengupta et al. [22] proposed a
residual appearance renderer by employing a self-supervised
reconstruction loss to learn inverse rendering on images.
Yu and Smith [23] used multi-view stereo supervision to
train an hourglass-based neural network with skip connec-
tions to predict normal and albedo from a single image.
Li et al. [24] proposed an inverse rendering network to esti-
mate shape, spatially-varying lighting, and SVBRDF from a
single image. Still they are limited to what is expressible by
their physically-based rendering model, whether for inverse
rendering or relighting.

Some other learning-based relighting methods [4]-[6], [25]-
[27] have taken neural rendering into the relighting task. Based
on the inverse rendering network [23], Yu et al. [6] further
proposed a self-supervised neural rendering framework for
outdoor scene relighting. Bi et al. [27] proposed a neural
rendering framework with a scene appearance representation to
enable relighting from several unstructured mobile phone flash
images. Nestmeyer et al. [26] and Wang et al. [25] proposed
to decompose the input image into intrinsic components using
neural networks for single image portrait relighting. Sang and
Chandraker [5] proposed a joint learning approach to estimate
shape and SVBRDF, as well as relight the object from a
single image under point light or environment illumination.
However, they require accurate reflectance or multi-view data
for supervised training, which is difficult to obtain in practice.
In addition, they often focus on single objects rather than
complex scenes. In contrast, we propose to solve any-to-any
scene relighting by directly learning the relighting functions
from RGB-D images without an explicit reflectance estimate.

C. Any-to-Any Relighting

Any-to-any relighting is first proposed in [28], [29], which
aims to relight a source image with the illumination settings
of a guide image. Hu et al. [10] proposed a encoder-decoder
structure augmented with a self-attention scheme to improve
global illumination effects. Yang et al. [11] proposed to solve
any-to-any relighting as an image-to-image translation task,
where the goal was to directly map the source images and
the guides images to the relit images using a single stream
structure network. Yazdani et al. [12] proposed to fuse the
intrinsic image-based relighting results and direct relighting
results by a learned weight map. These methods all integrate
relighting of the color temperature and direction of the light
source into one single end-to-end model, which would suffer
from task-aliasing effects. More importantly, their generated
relit images often contain blur and artifacts, and do not well
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Fig. 1. Given one RGB-D image of a source scene (a) and one RGB-D image of a guide scene (b), our proposed method is able to relight the source scene
with the illumination of the guide scene (d), while maintaining the local shading and attached-shadow details and accurately recovering the color temperature

of the relit image (h).

maintain the local shading and attached-shadow details, par-
ticularly for the shadow regions in source images. Inspired by
the physical principles of image formation, we try to propose a
novel neural architecture to mitigate these problems. Last but
not least, some image restoration works [30], [31] also adopted
the disentanglement idea to design different sub-networks with
physically meaningful functions, which is proven to achieve
promising performance.

I1l. PHYSICAL IMAGE FORMATION

Unlike existing any-to-any relighting methods that fail at
maintaining the local details, we seek to incorporate the phys-
ical principles of image formation into our neural rendering
design to improve local illumination effects. The physical
process of image formation in the real world, where light
sources emit photons that interact with the objects in the scene,
is often formulated as the rendering equation [32]:

I (X, Wo) = /m fr (X, Wi, Wo) L (X, wj) (Wi - ny) dwj, (1)

where L (x,wj) and | (X, wp) are the incoming and outgoing
radiance respectively along w; and w, from a particular
surface point X. f; (X, wj, Wy) is the bidirectional reflectance
distribution function (BRDF) describing the optical properties
of materials, and (w; - ny) represents the weakening factor of
outgoing radiance due to incident angle.

Assuming that the scene is illuminated with a point light
source with the direction | and the color temperature T, Eq. 1
can be reformulated as:

(%) = fr (X, I)lL(x, I2 T) (ny - I), 2

+dZ ()

where d is the distance between the point light source and the
surface point. L is attenuated with the distance by a factor
1/ (1+d?), and also determined by its color temperature T.
In the case of a fixed viewpoint, we discard the viewing
direction wy for simplicity. Note that the point light source
is conceptually simple, but it leads to challenging relighting
problems, such as shadow synthesis and removal. Compared
to the directional light source, it also needs to account for
near-field illumination effects.

When the scene is illuminated with a point light source
with different lighting directions and color temperatures, the
appearance of the scene will change accordingly. Suppose the
point light source is rotated from lg¢ to kgt and its color
temperature changes from Tg¢ to Tigt, fr is a Lambertian
BRDF, we can obtain the new outgoing radiance lygt(X) using
Eq. 2 as the following relighting formulation:

f

9
L (X, Ttgt) ' (1 + df (lsrc)) (nx : |tgt)
L (X, Tsre) (1 +dZ (kgt)) (Nx - lsrc)

local term O

®)

ltgt(X) = lsrc(X)

Here a visibility term (also called a global term later) V
that takes into account the occlusion between the point light
source and the surface point is added to produce shadows.
Since the change in lighting directions doesn’t affect L in this
case, we can discard | of L for simplicity.

Motivation for neural rendering design. Based on the
above relighting formulation, we propose to solve any-to-any
relighting by learning three functions, a lighting estimation
function h, a color temperature transfer function g, and a
lighting direction transfer function f. For the function h,
because both T and | in Eq. 3 are unknown quantities, we first
need to use h to estimate T and | from the known quantities
| and D. Once T and | are obtained, the function f and
the function g are proposed to model the two parts of Eq.
3 respectively. Specifically, g is learned from the surface
point’s appearance and color temperatures. f is learned from
the output produced by g, lighting directions, as well as
additional physical properties. Thus we formulate our any-to-
any relighting learning as:

T.I=h(,D), (4)
ligt (X) = f (g ('src ), Tsrc, Ttgt) 2 %, Ny, lsres ligts Dsrc) )
®)

where D denotes the scene depth. We model the functions f,
g and h using neural networks.
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Fig. 2. An overview of our proposed pipeline. The whole pipeline decomposes any-to-any relighting into three sub-networks: 1) lighting estimation network,
2) color temperature transfer network and 3) lighting direction transfer network. The lighting estimation network takes two RGB-D images captured from
the source scene and the guide scene respectively as input and predicts their illumination settings including the color temperature and lighting direction.
The estimated illumination settings and the source RGB-D image are then fed into the color temperature transfer network and the lighting direction transfer
network to generate the target relit image. X and N denote the position map and the normal map respectively.

We further observe that, the relighting formulation in Eq. 3
can be viewed as the product of a local term O and a
global term V. Based on the observation, the generation of
the local term needs only to account for the local properties
and illumination settings of the surface point. Conversely,
the generation of the global term needs to account for the
interaction between the current surface point and other surface
points. In other words, the global term needs to account for
the presence of occluders between the light source and the
surface points.

In summary, the function g only describes the local pixel-to-
pixel mapping relation, whereas the function f further consid-
ers the relation between distant surface points via occlusions
in space, while preserving the local pixel-to-pixel mapping
relation. These important observations will serve as design
guidelines for our networks.

IV. METHOD

As mentioned in Sec. I11, we formulate any-to-any relighting
as a regression problem modeled by three functions: f, g and
h. In this section, these three functions are further modeled as
corresponding feedforward neural networks. Fig. 2 shows the
proposed pipeline. By decomposing any-to-any relighting into
three sub-tasks, we allow each network to focus on a relatively
easier task with direct supervision, which effectively avoids
task-aliasing effects. Each network is trained individually with
its own input and output pairs derived from ground truth. The
details of these three neural networks are described as follows.

A. Lighting Estimation

The lighting estimation network (LE-Net) takes a single
RGB-D image as input and outputs estimated illumination
settings including a lighting direction and a color temperature.
As shown in Fig. 3, we adopt a hard parameter sharing
scheme [33] to implement the lighting estimation network.
Specifically, the lighting estimation network is composed of
a parameter sharing module and two task-specific output
modules. The parameter sharing module consists of four
residual convolution blocks (RCBs) and a global average
pooling (GAP) layer. Each RCB is followed by a max-pooling
layer and the GAP layer is used to yield a shared feature. The

'\ Lit. Dir. Est. Module

h i
Param. Sharing Module

"A.\Col. Temp. Est. Modulg,/

RCB+Maxpooling . GAP . FC+PReLU FC

Fig. 3. Lighting Estimation Network. A parameter sharing module is applied
to learn a general representation from multi-tasks, while a lighting direction
estimation module and a color temperature estimation module are used to
estimate their respective illumination settings from shared features.

shared feature is then fed into the task-specific output modules
to predict their respective illumination setting.

B. Color Temperature Transfer

The color temperature transfer network (CTT-Net) uses
the illumination settings predicted by the lighting estimation
network to relight the source image. As discussed in Sec. Ill,
g only considers the local mapping relation. Thus a pixel-to-
pixel nonlinear color mapping function Mg .1, is designed
to map the source image lsr¢ With a color temperature Tgy¢ to
the target image I}gt with a color temperature Tigt:

|Atgt =g ('src, Tsre, Ttgt) = Mrgc—>Tige K(lsre), (6)

where K (Igr¢) : R® — R" is a kernel function that transforms
the 3-dimensional RGB to a n-dimensional space. Followed
by [34], [35], a polynomial kernel function with a 3"% degree
expansion is adopted as below:

K:[R,G,B]" - [R,G,B,R? G2, B2 RG,GB,RB,
R3,G®, B3, RG?, GB? RB? GR? BG?, BR? RGB]'. (7)
Higher degree polynomials are also chosen as the kernel

function, however we did not observe any noticeable improve-
ments in our experiment.
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Fig. 4. Lighting Direction Transfer Network. Inspired by the physical image formation process, multiple physical attributes of the surface point are fed into the
network to assist in pixel-level illumination modeling. A parallel multi-scale architecture is also adopted to maintain high-resolution representations through
high-resolution RDBs and strengthen the representations with parallel low-resolution RDBs, which well transfers the local details under one illumination

condition to that under another illumination condition.

In Eq. 6, we estimate the nonlinear mapping function
Mg .- T Using a fully-connected network, whose inputs are
the color temperature Tgrc Of the source image and the color
temperature Tig Of the target image. Fig. 2 shows the network
architecture. In contrast to the U-Net [36], we directly utilize
fully connected layers to model the local mapping relation.
Specifically, the color temperatures Tgrc and Tig, which are
both represented as one-hot vectors, are concatenated together
and fed into two fully-connected layers. The fully connected
layers output a 128-dimensional feature vector and a 256-
dimensional feature vector respectively. Each fully-connected
layer is followed by a rectified linear activation function. The
256-dimensional feature vector is finally passed to the last
fully-connected layer to output Mg .1y -

C. Lighting Direction Transfer

The lighting direction transfer network (LDT-Net) aims to
re-render the intermediate relit image under the estimated
lighting directions. As discussed in Sec. 1, to maintain local
shading and attached-shadow details in the image synthesis
process, the neural network is designed with two important
features. First, multiple physical attributes to guide: not only
the depth map but also the position and normal of the
surface point are fed into the network to assist in pixel-level
illumination modeling. For the position map, we use the
depth map and camera intrinsic matrix to calculate 3D spatial
positions. We then use the plane fitting method to esti-
mate the normal of each 3D point to obtain the normal
map. See more details in the supplementary. Second, a par-
allel multi-scale architecture [37]-[39] to render: we pro-
pose to maintain high-resolution representations through high-
resolution convolutions (modeling the local mapping relation)
and strengthen the representations with parallel low-resolution
convolutions (modeling the interactions between distant sur-
face points). In contrast, existing relighting methods usually
recover high-resolution representations from low-resolution
representations outputted by an encoder, which breaks the
pixel-level illumination modeling.

As a result, a parallel multi-scale architecture incorporating
multiple physical attributes is designed to model the function

f. Fig. 4 shows the network architecture. Specifically, the
lighting direction transfer network mainly consists of par-
allel three-stream sub-networks. Each sub-network is com-
posed of five residual dense blocks [40] (RDBs) and keeps
the feature map size constant. Besides, the top sub-network
includes one input convolutional layer at the start and one
output convolutional layer at the end. The input convolu-
tional layer is used to extract rich feature maps from the
inputs, and feature maps are then fed to the subsequent
RDB. On the contrary, the output convolutional layer gen-
erates the target relit image from the final feature maps. The
information flow between sub-networks is implemented via
several down-sampling blocks and up-sampling blocks. The
down-sampling block reduces the feature map size by a factor
of 2 and multiplies the feature map number by 2, while
the up-sampling block performs the reverse operation. Note
that the top sub-network (RDBj;--- RDBjs) can maintain
the original resolution representations to model the pixel-level
relationship between the input and the output without losing
local information. See the appendix for more details of the net-
work architectures including LE-Net, CTT-Net and LDT-Net.

D. Training the Model

1) Loss Functions: In our work, lighting estimation is seen
as a classification task to obtain the direction and color
temperature of the point light source. Therefore, we apply the
cross-entropy loss function H to train the LE-Net:

)

where premp and pgir are the true color temperature and
lighting direction respectively, gtemp and ggir are the predicted
color temperature and lighting direction respectively.

For the CTT-Net, we adopt the £; loss to train the network.
For the LDT-Net, the £1 loss is also used to minimize the
errors. In addition, inspired by [41], SSIM is utilized to make
the network learn to produce visually pleasing images. Thus,
the loss Lq for the LDT-Net is defined as:

Lc=H (ptemp, Qtemp) + H (pdir , Adir ) »

La = lIftgt — I, + A(1 — SSIM(ltgt, 1)), )
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where | and | are the generated relit image and ground
truth respectively. A is set to 0.1 in our experiment. Note
that we train these three networks separately. Theoretically,
based on the pre-trained networks, we can continue to train
the PNRNet in an end-to-end fashion, but we did not observe
any performance improvement in our experiment.

2) Data Augmentation and Training Details. Data augmen-
tation is a critical step for training neural networks to reduce
over-fitting. To this end, we increase the diversity of the
color temperatures by interpolating between the predefined
color temperatures. We conduct our experiments using Pytorch
on 2 NVIDIA Titan RTX GPUs. The parameters of the net-
work are initialized with Kaiming Uniform Initialization [42].
We use Adam optimizer [43] with parameters: learning rate =
5e — 5, betas = (0.9, 0.999). Consequently, the batch size is
set to be 16 to maximize GPU memory utilization.

V. RESULTS AND ANALYSIS

A. Datasets and Evaluation Metric

Our method is trained on a novel Virtual Image Dataset
for IHlumination Transfer (VIDIT) dataset [44], which contains
390 different scenes and is split into three different mutually-
exclusive sets: training set (300 scenes), validation set (45
scenes) and test set (45 scenes). Each scene is captured with
40 predetermined illumination settings, which is a combination
of 5 color temperatures (2500K, 3500K, 4500K, 5500K, and
6500K) and 8 light directions (N, NE, E, SE, S, SW, W,
NW). Note that the test set is kept private for the challenging
benchmarking purpose, while the train and validation sets are
made public for academic evaluation. We also qualitatively
compare relighting results on the DiLiGenT-MV dataset [45]
and evaluate the proposed color temperature transfer network
on our own captured data.

The evaluation of lighting estimation, introduced by [28],
is based on the prediction accuracy:

~ 2
1 N-1 ‘Ai — Ai’ mod 180 N-1 . 2
— — T —T) (10
Ng 180 +Niz(;(' ) o)
AngLoss TempLoss

where A is the predicted angle (0-360) for test sample i and
A is the corresponding ground-truth value. T; is the temper-
ature prediction for test sample i and T; is the corresponding
ground-truth value. T; takes values equal to [0, 0.25, 0.5, 0.75,
1], which correspond to the color temperature values [2500K,
3500K, 4500K, 5500K, 6500K] respectively.

In addition to the common image quality metrics, such as
PSNR and SSIM, the Mean Perceptual Score (MPS) [28],
specially designed for any-to-any relighting performance eval-
uation, is also employed as follows:

MPS=05-(S+(1—L)) (11)

where S is the SSIM score, and L is the LPIPS score. MPS
is one of the most important quantitative metrics responsible
for the human perception of digital image quality.
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TABLE |
EFFECTS OF RELIGHTING DECOMPOSITION AND THE ORDER

MPS 1T SSIM{T LPIPS| PSNR 1T
Ours w/o decom. 0.6917  0.6806 0.2973 18.243
LDT-Net — CTT-Net  0.7063  0.6949 0.2823 18.521
Ours 0.7090  0.6986 0.2806 18.593

In order to independently evaluate the color temperature
transfer performance, we define a cycle-consistent loss:

Nt
1 :
N_T ; Metric (Isrc’ MTi—>Tsrc (MTsrs—>Ti (lsrc))) (12)

where Nt indicates the number of color temperatures.

B. Ablation Sudy

1) Any-to-Any Relighting Decomposition: To validate the
effect of any-to-any relighting decomposition, we additionally
train a single network for simultaneous relighting under novel
color temperatures and lighting directions. Note that the single
network is based on our lighting direction transfer network,
and it also takes the estimated source and target temperature
as extra inputs. Tab. | shows the quantitative comparison.
The performance gap between this network (ours w/o decom.)
and ours demonstrates that naively integrating the relighting
of color temperatures and lighting directions into one single
model without task decomposition or intermediate supervision
does not work as well as our decomposition approach. In addi-
tion, we exchange the order of the color temperature transfer
and the lighting direction transfer for comparison. As shown in
Tab. I, the performance of the model “LDT-Net — CTT-Net”
is slightly lower than that of our proposed model (“CTT-Net
— LDT-Net”). Actually, compared to the lighting direction
transfer task, the color temperature transfer task is much easier
and has less impact on the subsequent task.

2) Effects of Physical Attributes: In order to prove the
gain that the network obtains from integrating the physical
attributes, we retrain the lighting direction transfer network
without physical attributes X and N. As shown in Tab. I,
all evaluation indicators have declined to varying degrees.
In particular, the SSIM value is decreased by about 3.1%.
We also retrain the LDT-Net without X or N. The quantitative
results in Tab. 1l show that the LDT-Net benefits from each
of the physical attributes. In fact, from the perspective of the
physical imaging process, these physical attributes determine
the appearance of the scene, especially the local illumination
effects. For the normal map N, taking the first row in Fig. 5(Q)
as an example, we can see that ours or ours w/o X is able to
generate visually plausible local shading and attached-shadow
details. For the position map X, since the radiance of a point
light source attenuates with distance, the incident radiance will
vary with the position of the surface point, which accounts for
near-field illumination. It demonstrates from the second row
of Fig. 5(g) that ours or ours w/o N can produce darker details
than ours w/o X and ours w/o X, N. Note that the light source
is on the left of the image and the close-up details are located
at the right of the image.

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on June 11,2022 at 00:01:56 UTC from IEEE Xplore. Restrictions apply.



HU et al.: PNRNet: PHYSICALLY-INSPIRED NEURAL RENDERING FOR ANY-TO-ANY RELIGHTING

TABLE Il
EFFECTS OF PHYSICAL ATTRIBUTES

MPS+ SSIM{ LPIPS| PSNR ¢
Ours wio X,N  0.6812 0.6702  0.3078 18.093
Ours w/o X 0.6925 0.6795 02946  18.189
Ours w/o N 0.7006  0.6911 02900 18314
Ours 0.7090 0.6986  0.2806  18.593

(a) Source Image (b) Ground Truth

(e) Ours w/o N

(f) Ours w/o X,N (g) Close-ups

Fig. 5. Qualitative comparisons w.r.t. physical attributes.

3) Effects of Fusion Network: We also add another net-
work, which is called fusion network (F-Net), to generate
the final optimized relit image from the LDT-Net output and
the CTT-Net output using a parallel structure or a serial
structure. The difference between the parallel structure and
the serial structure is that the LDT-Net input of the former
is the source image, while the LDT-Net input of the latter is
the output of the CTT-Net. Note that we fix the parameters
of the three sub-networks (i.e., LE-Net, CTT-Net and LDT-
Net) and only update the parameters of the fusion network.
The fusion network is designed with 6 convolution layers
and each is followed by a rectified linear activation function.
Tab. I11 reports the results. It shows that ours w/ F-Net (Serial)
achieves the best MPS result, which is a 0.37% improvement
over ours. In fact, as shown in Fig. 7, the LDT-Net could
result in a slight degradation of color temperature quality, and
the F-Net (Serial) uses the color temperature information in
the CTT-Net output to re-correct the color temperature of the
LDT-Net output (namely our PNRNet result), which leads to
better results. In contrast, the F-Net (Parallel) also needs to
perform color temperature transfer on the LDT-Net output, but
the color temperature gap between the LDT-Net output and the
CTT-Net output is larger than that of the F-Net (Serial), which
may lead to a slight decrease in performance. As shown in
the close-up details in Fig. 6, compared to our PNRNet result
(yellow box), both ours w/ Serial F-Net (green box) and ours
w/ Parallel F-Net (blue box) achieve higher color temperature
results, which is close to the ground truth. Finally, it is worth
noting that the F-Net will introduce additional computational
overhead and memory overhead.

4) Different Settings of LDT-Net: We also conduct ablation
studies on different settings (i.e., different combinations of
the height and width) of the LDT-Net. Note that the height
represents the number of parallel sub-networks, and the width
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TABLE 11
EFFECTS OF FUSION NETWORK
MPS T SSIM1 LPIPS| PSNR 7T
Ours 0.7090  0.6986 0.2806 18.593
Ours w/ F-Net (Parallel) 0.7113  0.7030 0.2804 18.727
Ours w/ F-Net (Serial) 0.7116  0.7031 0.2800 18.721

fs,ﬁg(»l»f(-)»
+

LDT-Net Output
(Ours)

Source Image

Guide Image

CTT-Net Output

L g(')]
Ground Truth Ef()

\
-

Close-ups

LDT-Net Output

Fig. 6. Qualitative comparisons of the F-Net with different structures.
TABLE IV

RESULTS OF DIFFERENT SETTINGS OF LDT-NET oN THE NTIRE
2021 TRACK2 VALIDATION SET

Height | Width MPS SSIM  LPIPS  PSNR
2 0.7004  0.6905 0.2898  18.082

1 4 0.7029  0.6922 0.2865 18.163
6 0.7055 0.6949  0.2839  18.351]

2 0.7037  0.6937  0.2864  18.344

2 4 0.7061  0.6947 0.2825  18.502
6 0.7087  0.6974  0.2800  18.561

2 0.7054  0.6949  0.2841  18.352

3 4 0.7073  0.6966  0.2821  18.572
6 0.7090 0.6986 0.2806  18.593

represents the number of blocks contained in the sub-network.
Tab. 1V reports the results. It shows that increasing the height
and width of the LDT-Net leads to higher MPS.

C. Comparative Study

We compare with prior works in three aspects, color tem-
perature transfer, any-to-any relighting and model complexity.
In addition to existing any-to-any relighting methods [10],
[12], we also compare the deep portrait relighting method
(DPR) [9] that does not explicitly reconstruct the surface
reflectance. Since the DPR focuses on directional lighting
which is represented as spherical harmonics, for a fair com-
parison, we modify the outputs of their original lighting
estimation network to the combination of lighting directions
and color temperatures in order to train the model on the
VIDIT dataset, while all others remain unchanged. Owing to
our unsuccessful attempt to reproduce the results of S3Net [11]
as reported in their paper, we do not compare our method
against theirs.
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TABLE V

QUANTITATIVE COMPARISON OF COLOR TEMPERATURE TRANSFER ON
THE AIM 2020 TRACK2 VALIDATION SET

Method MAE | PSNR{ MPS+ SSIM 4
DPR[9] 0.0396 23570  0.8659  0.8584
SA-AE[10] 0.0308 25497  0.8873  0.8774
AMIDR-Net[12] 0.0342  24.630 09351  0.8702
CTT-Net + LDT-Net  0.0113  34.943 09659  0.9498
CTT-Net 0.0022  52.039  0.9942  0.9885

1) Color Temperature Transfer: We compared the perfor-
mance of color temperature transfer with previous relighting
methods on the AIM 2020 track2 validation set [28]. The AIM
2020 track? validation set contains 45 images. Each image pro-
vides corresponding illumination setting ground-truth which
can be fed into our CTT-Net for independent performance
evaluation without introducing errors caused by inaccurate
lighting estimation. Following the calculation steps of Eq. 12,
we transform each image from the original temperature to
five predefined color temperatures, and then transform them
backward to compute the differences between the input image
and the predicted results. The metrics in Eq. 12 are chosen
as MAE, PSNR, MPS and SSIM respectively. Tab.VV shows
the quantitative results. It can be seen that both CTT-Net
and CTT-Net + LDT-Net outperform previous methods by
a large margin. In fact, CTT-Net + LDT-Net reduces the
performance of color temperature transfer, which implies inter-
ference between two sub-tasks. Fig. 7 shows the qualitative
results. Compared to our method, other relighting methods [9],
[10], [12] often introduce unnecessary shadows and artifacts.
For example, the insets of Fig. 7(b) show that the shadows
are removed incorrectly by [12] and [9]. The highlights on
the blue buckets in Fig. 7(c) are either suppressed or saturated
by [10], [12] and [9]. The insets of Fig. 7(d) show that the
shading details are also not well preserved in their results.
In contrast, our CTT-Net does not alter the original shading
and shadow details which are only caused by the changes
in lighting direction. It implies that the decomposition of
any-to-any relighting can effectively avoid the task-aliasing
effects. In fact, the key to solving the task-aliasing effect is
to recognize deep features from different tasks. Compared to
existing methods where different tasks share common deep
features, the idea of decomposition makes the deep features
inherently distinguishable. In other words, it makes the deep
features from different tasks independent of each other and
not interfere with each other. At the same time, our CTT-Net
is able to recover images with more accurate color temper-
ature and sharp details. This suggests that simply modeling
the pixel-to-pixel mapping relationship with fully-connected
layers is sufficient for the color temperature transfer task.
It can be confirmed from Tab.V that the performance of our
method is much better than that of these relighting methods
[10], [12] based on the multi-scale modeling with a U-Net
structure.

2) Any-to-Any Relighting: We also compare the perfor-
mance of any-to-any relighting with prior works on the NTIRE
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TABLE VI

QUANTITATIVE COMPARISON OF LIGHTING ESTIMATION ON THE AIM
2020 TRACK2 VALIDATION SET

Method TotalLoss |  AngLoss |  TempLoss |

DPR[9] 0.1930 0.1625 0.0305

SA-AE[10] 0.1556 0.1195 0.0361

AMIDR-Net[12]  0.2402 0.1986 0.0416

Ours (L1 loss) 0.1319 0.0833 0.0486

Ours (Eq. 8) 0.1083 0.0792 0.0292
TABLE VII

QUANTITATIVE COMPARISON OF ANY-TO-ANY RELIGHTING ON THE
NTIRE 2021 TRACK2 VALIDATION SET

Method MPS 1+ SSIM{1 LPIPS| PSNR T
DPR[9] 0.6697  0.6557 0.3163 17.586
SA-AE[10] 0.6814  0.6699 0.3071 18.209
AMIDR-Net[12] 0.6779  0.6940 0.3381 19.830
Ours 0.7090  0.6986 0.2806 18.593

2021 track2 validation set [29]. The NTIRE 2021 track2
validation set contains 90 input image and guide image pairs.
Tab.VII shows the quantitative results. We achieve the best
MPS over all other methods due to the preservation of local
fine details. AMIDR-Net achieves the highest PSNR value due
to the ensemble of multiple models, but it, in turn, produces
blurry results. Considering the AIM 2020 track2 validation set
provides the illumination setting ground-truth, we also evaluate
the performance of lighting estimation on it. The comparative
results are reported in Tab.VI. Our LE-Net achieves the lowest
loss in both lighting direction prediction and color temperature
prediction, which also contributes to the improvement of any-
to-any relighting performance. We also train the LE-Net using
the £; loss function. It shows that the £1 loss function
achieves comparable results to the cross-entropy loss function
in the light direction estimation accuracy, but its color tem-
perature estimation accuracy is slightly worse. Fig. 8 shows
the qualitative results of any-to-any relighting. Fig. 8(a) shows
that if the source image and the guide image share the same
illumination setting, the relit image produced by our method
is almost the same as the source image. On the contrary, DPR
introduces shadows and AMIDR-Net generates blurry results
with a lower color temperature. The insets of Fig. 8(b)(c) indi-
cate that our method produces visually accurate shading and
shadow details, which are consistent with the source geometry
structure. It implies that our LDT-Net, which incorporates
multiple physical attributes, is capable of generating local
details. We also note that the guide image in Fig. 8(f) is
almost completely dark, and only a little information in the
upper left corner area can be utilized to infer the illumination
setting. The corresponding insets indicate that our method can
accurately estimate the illumination setting and produce the
results without breaking the shading variation. We also provide
qualitative relit results on the NTIRE 2021 track2 test set in
Fig. 9. Note that the test set does not contain ground truth.
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Fig. 8. Qualitative comparison of any-to-any relighting on the NTIRE 2021 track2 validation set. We show representative examples with zoom-in details
focusing on color temperatures (a)(f), shading variation (c)(d), and shadows (b)(e). Note that our method outperforms all other approaches with sharper and
more accurate relit results.
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Guide Image Source Image

SA-AE AMIDR-Net Ours

DPR

Fig. 9.  Qualitative comparison of any-to-any relighting on the NTIRE
2021 track? test set. Note that our method is able to well preserve the shading
and attached-shadow details, while other methods suffer from the artifacts.

TABLE VIII
COMPARISON IN TERMS OF MODEL COMPLEXITY AND INFERENCE TIME

Method DPR[9] SA-AE[10] AMIDR-Net[12]  Ours
# Parameters (M) 24 20.3 190.8 17.0
Inference time (S) 0.886 0.990 1.383 0.960

3) Model Complexity and Inference Time: Tab.VIII reports
the comparison in terms of model complexity and inference
time among different methods. Note that all methods are tested
on the NTIRE 2021 track2 validation set with a single RTX
Titan GPU. The average inference time for a single image
with a resolution of 1024*1024 is reported. Although the
DPR with the fewest network parameters can handle portrait
relighting well, it cannot be easily extended to challenging
scene relighting. The AMIDR-Net achieves the highest PSNR
due to the ensemble of three multiple models but accordingly
leads to the most network parameters. In contrast, the SA-AE
and our method have almost the same amount of network
parameters, but our method achieves the best visual effects
among all the methods.

D. Generalization to Real Data

We further use real images to demonstrate the extensibility
of our method to real data in Fig. 10 and Fig. 11. As shown
in Fig. 10, the input real image is captured using an iPhone
8 plus cellphone at 1:00 PM, and we manually set its depth
map to 0. The image is first identified by the LE-Net as a
color temperature of 6500K and then fed into the CTT-Net to
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Fig. 10. Results of the CTT-Net on the real data.

generate the images under other predefined color temperatures
(2500K, 3500K, 4500K and 5500K). We also interpolate
color mapping functions (see the appendix for implemen-
tation details) to generate the images under user-defined
color temperatures (3000K and 5000K), while existing end-
to-end relighting models cannot handle this case. Compared
to the reference images, it is obvious that our method pro-
duces more accurate relighting outputs under novel color
temperatures.

We also provide qualitative comparison using two examples
in the DiLiGenT-MV dataset [45]. Note that the positions of
nearby point light sources are in front of the object, which are
not exactly the same as the positions of our point light sources.
Therefore, we select two images whose light source positions
are approximately in the south as the source images. As shown
in Fig. 11, compared with other methods, our method
is able to generate plausible shading and attached-shadow
details which are consistent with the target lighting
directions.
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(a) Source Images and
Target Illumination Settings

(b) Ours

(¢) AMDIR-Net

(d) SA-AE (e) DPR

Fig. 11. Qualitative comparison of relighting results on the DiLiGenT-MV dataset consisting of real images. Our method is able to generate plausible shading
and attached-shadow details which are consistent with the target lighting directions.

V1. CONCLUSION

In this paper, we present a novel network architecture
for relighting a source RGB-D image with the illumination
setting provided by a guide RGB-D image. Based on the
relighting formulation, we propose to decompose the task
into three simpler sub-tasks, which are lighting estimation,
color temperature transfer and lighting direction transfer, and
train corresponding sub-network separately. Inspired by the
physical image formation process, we propose to solve lighting
direction transfer with a parallel multi-scale network that
incorporates multiple physical attributes to model the local
illumination without missing the fine details. A simple yet
effective fully-connected neural network is designed to esti-
mate the non-linear color mapping function to transfer images
from one color temperature to another color temperature in
a pixel-level manner. Extensive experiments show that the
proposed decomposition solution can produce relit images
with better local shading and attached-shadow details than
prior works.

This work also has a few limitations that can be the
subject of future work. First, our model can be extended to
handle relighting of multiple near-field point light sources
by redesigning the lighting estimation network and collecting
more training data under multiple light sources. Second,
we just consider Lambertain BRDFs. It would be interesting

to extend our model to handle objects with specular reflection
by introducing specular BRDFs [46]. Finally, the regions relit
from hard-shadow regions can only recover the shading details
without generating texture details. A flow vector [47] can be
learned to select similar textures from adjacent regions to fill
in the regions.
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