


0 and 255), while the radiance in the physical world scene

often covers a much broader (higher) dynamics range (e.g.

from 0 to +∞). We also notice that ‘NeRF in the Dark’ tries

to recover radiance field from raw images with noise [40],

while it’s different from our method.

High Dynamic Range (HDR) imaging is the set of tech-

niques that recover HDR images from multiple LDR im-

ages with different exposures [55]. The most common

way to reconstruct HDR images is to take a series of LDR

images with different exposures at a fixed camera pose

and then merge those LDR images into an HDR image

[12, 39, 48]. These methods produce compelling results

for tripod-mounted cameras but may lead to ghost artifacts

when the camera is hand-held. To overcome the limitations

of conventional multi-exposure stack-based HDR synthesis,

some deep learning methods have been proposed to solve

this problem via a two-stage approach [26, 59]: 1) aligning

the input LDR images using optical flow or removing plau-

sible motion regions, 2) merging the processed images into

an HDR image. However, in cases with large motion, their

approach typically introduces artifacts in the final results.

Most critically, these HDR imaging methods are unable

to render novel views and the learning-based methods re-

quire HDR images as training supervision. To render novel

views, some methods try to merge image-based rendering

and HDR imaging techniques. [30,35,49,51]. However, the

image-based methods struggle from preserving view con-

sistency.

In this paper, we propose a method HDR-NeRF to re-

cover the high dynamic range neural radiance field from a

set of LDR images (Fig. 1a) with various exposures (the

exposure is defined as the product of exposure time and

radiance). To the best of our knowledge, this is the first

end-to-end neural rendering system that can render novel

HDR views (Fig. 1c) and control the exposure of novel LDR

views (Fig. 1b). Building upon NeRF, we introduce a dif-

ferentiable tone mapper to model the process that radiance

in the scene becomes pixel values in the image. We use an

MLP to model the tone-mapping operation. Overall, HDR-

NeRF can be represented by two continuous implicit neu-

ral functions: a radiance field for density and scene radi-

ance and a tone mapper for color, as shown in Fig. 2. Our

pipeline enables joint learning of the two implicit functions,

which is critical to recovering the HDR radiance field from

such sparse sampled LDR images. We use the classical vol-

ume rendering technique [25] to accumulate radiance, col-

ors, and densities into HDR and LDR images, but we only

use LDR ground truth as supervision.

To evaluate our method, we collect a new HDR dataset

that contains synthetic scenes and real-world scenes. We

compare our method with original NeRF [42], NeRF-W

(NeRF in the wild) [37], as well as NeRF-GT (a version

of NeRF that is trained from LDR images with consis-

tent exposures or HDR images). We provide quantitative

and qualitative results and ablation studies to justify our

main technical contributions. Our method achieves simi-

lar scores across all major metrics on this dataset compared

with NeRF-GT. Besides, compared to the recent state-of-

the-art NeRF and NeRF-W, our method can render LDR

novel views with arbitrary exposures and spectacular novel

HDR views. The main contributions of this paper can be

summarized as follows:

1. An end-to-end method HDR-NeRF is proposed to re-

cover the high dynamic range neural radiance field

from multiple LDR views with different amounts of

exposure.

2. The camera response function is modeled, both HDR

views and LDR views with varying exposures are ren-

dered from the radiance field.

3. A new HDR dataset including synthetic and real-

world scenes is collected. Compared with SOTAs, our

method achieves the best performance on this dataset.

The dataset and code will be released for further re-

search purposes in this community.

2. Related Work
Novel View Synthesis. Novel view synthesis aims to gen-

erate novel images from a new viewpoint using a set of in-

put views. It is a typical application of image-based ren-

dering technique [52], such as rendering novel views us-

ing depth [6, 7, 43, 67, 68] or explicit geometry informa-

tion [13, 22, 23, 63]. Many classic IBR methods estimate

radiance of input images using HDR imaging methods to

render novel HDR views [30, 35, 49, 51]. The estimated ra-

diance using HDR imaging methods is always image-wise.

It may be hard to preserve the view consistency in challeng-

ing scenes. On the other hand, light field rendering methods

interpolate views based on implicit soft geometry estimates

derived from densely sampled images [5, 11, 19, 31, 38].

In recent years, deep learning techniques have been ap-

plied to novel view synthesis to get high-quality photoreal-

istic views. These learning-based approaches can be clas-

sified into three categories according to scene representa-

tion models. The first category aims to combine the convo-

lutional neural network (CNN) with traditional voxel grid

representation [9, 34, 53], such that Sitzmann et al. [53] use

a CNN to compensate the discretization artifacts from low

resolution voxel grids. Lombardi et al. [34] control the

predicted voxel grids based on the input time of dynamic

scene. Inspired by the layered depth images [50], other

learning-based methods focus on training a CNN to pre-

dict a multi-plane images representation from a set of in-

put images and render novel views using alpha-compositing

[10,17,41,66]. These methods predict multi-planes images
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to synthesize views for specific applications, such as light-

field rendering [41] and baseline magnification [66]. The

third category is the NeRF family which represents a scene

with a neural radiance field [3, 4, 8, 33, 36, 37, 42, 62]. Al-

though these recent methods achieved high-quality of ren-

dered novel views, none of them has tackled the task of syn-

thesizing a novel view with high dynamic range.

Neural Implicit Representation. Recently, there has been

a surge in representing 3D scenes in implicit functions via

a neural network. Compared to traditional explicit repre-

sentations, such as point cloud [47], voxels [18] and oc-

trees [57], neural implicit representations have shown high-

quality view synthesis results such as continuous and high-

fidelity. We focus on the neural radiance fields representa-

tion that implicitly models the volume densities and colors

of the scenes with MLPs [42]. NeRF approximates a con-

tinuous 3D function by mapping from an input 5D location

to scene properties. Recently, NeRF has been explored for

novel view relighting [4, 54], view synthesis for dynamic

scenes [14, 32, 33, 44, 46, 58], scene editing [21, 37, 61, 64].

Particularly, Martin-Brualla et al. [37] propose NeRF-W to

build NeRF from internet photo collections with different

photometric variations and occlusions. They learn a per-

image latent embedding to capture photometric appearance

variations in training images, which enable them to modify

the lighting and appearance of a rendering. Although vari-

ous extensions have been explored to NeRF, which enables

them to effectively represent the scene radiance captured by

cameras. However, all the NeRF based methods ignore the

physics process from radiance to pixel values, which hin-

ders them from representing the radiance in the real world.

High Dynamic Range Imaging. Traditional multiple

exposures-based HDR imaging methods reconstruct HDR

images by calibrating the CRF from an exposure stack that

a series of LDR images under different exposures with a

same pose [12] or directly merge the LDR images into an

HDR image [39]. To overcome the limitations of traditional

methods, such as ghosting in the HDR results when LDR

images are captured by a hand-held camera or on a dynamic

scene, some methods are proposed to detect the motion re-

gions in the LDR images and then remove these regions in

the fusion [20, 24]. In contrast, alignment-based methods

align the input multiple LDR images by estimating optical

flow then merge the aligned images [26, 56, 60]. Depend-

ing on the great potential of deep learning, some methods

try to reconstruct an HDR image from a single LDR im-

age [16, 27, 28]. However, most HDR imaging methods

require the given LDR images with a fixed or quasi-fixed

camera pose. Besides, these methods can only synthesize

HDR images with original poses and require ground truth

HDR images to supervise.

Figure 2. The pipeline of HDR-NeRF modeling the simplified

physical process. Our method is consisted of two modules: an

HDR radiance field models the scene for radiance and densities

and a tone mapper models the CRF for colors.

3. Background

3.1. Neural Radiance Fields

NeRF [42] represents a scene using an implicit neural

function, which maps a ray origin o = (x, y, z) and ray

direction d = (�, �) into a color c = (r, g, b) and density

�, that is (o,d) → (c, �). Specifically, suppose a camera

ray r is emitted from camera center o with direction d, i.e.

r(s) = o + sd where s denotes a position along the ray.

The expected color �C(r) of r(s) is defined as:

�C(r) =
� sf

sn

T (s)�(r(s))c(r(s),d) ds, (1)

T (s) = exp
�
�

� s

sn

�(r(p)) dp
�
, (2)

where sn and sf denote the near and far boundary of the

ray respectively, and T (s) denotes an accumulated trans-

mittance. The predicted pixel value is then compared to the

ground truth C(r) for optimization. For all the camera rays

of the target view with a pose P, the color reconstruction

loss is thus defined by

L =
�

r�R(P)

� �C(r)� C(r)�2, (3)

where R(P) is a set of camera rays at target position P.

In practice, naively feeding 5D coordinates into the

MLP results in renderings that struggle from representing

high-frequency variation in color and geometry. To tackle

this problem, a positional encoding strategy is adopted in

NeRF. Besides, NeRF simultaneously optimizes two mod-

els, where the densities predicted by the coarse model are

used to bias the sample of a ray in the fine model.
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3.2. Camera Response Functions

In most imaging devices, the incoming irradiance is

mapped into pixel values and stored in images by a series

of linear and nonlinear image processing (e.g. white bal-

ance). In general, all the image processing can be com-

bined in a single function f called camera response func-
tion (CRF) [15]. It’s hard to know the CRFs of cameras

beforehand, because they are intentionally designed by the

camera manufacturers. Taking ISO gain and aperture as im-

plicit factors, without loss of generality, the nonlinear map-

ping can be modeled as [55]:

Z = f(H�t), (4)

where H is irradiance, the total amount of light incident on

a camera sensor, Z denotes the pixel value, and Δt denotes

exposure time which is decided by the shutter speed. Note

that, in the neural radiance field, the integration of scene

radiance over the lens aperture is ignored and the irradiance

is considered as radiance [15].

4. HDR Neural Radiance Fields
In this section, we introduce our method HDR-NeRF for

recovering high dynamic range neural radiance fields. As

shown in Fig. 2, our method consists of two main modules

to be described in this section. Our goal is to recover the

real radiance field in which the radiance is between 0 and

+∞ by using the LDR images with different exposures as

supervision. The main challenge is how to efficiently aggre-

gate information in the LDR images to get an HDR radiance

field.

4.1. Scene Representation

To render novel HDR views, we represent the scene as an

HDR radiance field within a bounded 3D volume. An MLP

F called radiance field is used to model the HDR scene ra-

diance, which is similar to NeRF. For a given ray origin o
and ray direction d, the radiance field F outputs the radi-

ance e and density � of the ray r(s) = o + sd, which is

formulated as:

(e(r), �(r)) = F (r). (5)

Note that, the outputs of implicit function in NeRF are col-

ors and densities, while our outputs are radiance and densi-

ties.

4.2. Learned Tone-mapping

Representing a scene with an HDR radiance field, the

key is how to ensure radiance field outputs the radiance of

ray without the HDR ground truth as supervision. Inspired

by the CRF calibration that the process of determining the

mapping between the digital value of a pixel and the cor-

responding irradiance (up to a scale factor), a tone mapper

is introduced to model the nonlinear mapping of HDR rays

to LDR rays. Specifically, we use an MLP f to estimate

the CRF of a camera and map our predicted radiance into

colors. According to Eq. (4), our predicted radiance e by

Eq. (5) is then tone-mapped into color c. We formulate the

differentiable tone-mapping operation as:

c(r,�t) = f(e(r)�t(r)), (6)

where Δt(r) denotes the exposure time of a camera for cap-

turing the ray r. We can easily read exposure time from the

EXIF files that contain metadata about photos, such as ex-

posure time, focal length, f-number, etc. In practice, the

RGB channels of images are tone-mapped with different

CRFs, hence three MLPs are used in our method to process

each channel independently.

Following the classical nonparametric CRF calibration

method by Debevec and Malik [12], we transform all the

images into a logarithm radiance domain to optimize the

network. Specifically, we assume the tone mapper f is

monotonic and invertible, so we can rewrite Eq. (6) as:

ln f�1 (c(r,�t)) = ln e(r) + ln�t(r). (7)

We then present the inverse function of ln f�1 as g, thus:

c(r,�t) = g (ln e(r) + ln�t(r)) , (8)

where g = (ln f�1)�1. As a result, our tone mapper func-

tion is transformed to function g with a logarithm radiance

domain.

4.3. Neural Rendering

We use the conventional volume rendering technique

[25] to render the color of each ray passing through the

scene. Combining the radiance field module and tone map-
per module, we substitute Eq. (8) into Eq. (1). The expected

color �C(r,Δt) of ray r(s) with near and far bounds sn and

sf is given by:

�C(r,�t) =
� sf

sn

T (s)�(r(s))g (ln e(r(s)) + ln�t(r)) ds,

(9)

where T (s) is defined in Eq. (2). To render HDR views,

the tone-mapping operation is removed. Similarly, an HDR

pixel value is approximated as:

�E(r) =
� sf

sn

T (s)�(r(s))e(r(s)) ds. (10)

4.4. Optimization

Color reconstruction loss. To optimize the two implicit

functions F and g from input LDR images, we minimize

the mean squared error (MSE) between the LDR views ren-

dered by HDR-NeRF and the ground truth LDR views.

Similar to NeRF, we simultaneously optimize a coarse
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model and a fine model. The color reconstruction loss is

formulated as:

Lc=
�

r�R(P)

� �Cc(r,�t)�C(r,�t)�2
2+� �Cf (r,�t)�C(r,�t)�2

2,

(11)

where C is the ground-truth color of each pixel, and �Cc
and �Cf are the color predicted by the coarse model and fine

model respectively.

Unit exposure loss. Our method recovers radiance e up

to an unknown scale factor � (i.e., �e) via the color re-

construction loss. It is equivalent to add a shift ln� to the

independent variable of function g, according to Eq. (8), as

shown in Fig. 7d. As a consequence, we need to add an

additional constraint to fix the scale factor �. Specifically,

we fix the value of g(0) to C0, and the unit exposure loss is

defined as:
Lu = �g(0)� C0�2

2. (12)

The meaning of this constraint is that the pixels with the

value C0 are assumed to have a unit exposure. However, C0
is usually unknown in practice. We generally set the C0 as

the midway of the pixel value on real-world scenes.

Finally, our HDR-NeRF is end-to-end optimized using

the following loss:

L = Lc + �uLu, (13)

where �u denotes the weight of unit exposure loss.

5. Experiments
5.1. Implementation Details

In training and testing phases, an eight-layer MLP with

256 channels is used to predict radiance e and densities

�, and three one-layer MLPs with 128 channels to predict

RGB values of color c respectively. We sample 64 points

along each ray in the coarse model and 128 (64) points in

the fine model on synthetic (real) dataset. The batch size of

rays is set to 1024. As with NeRF, positional encoding [42]

is applied for ray origins and ray directions. We fix the loss

weight �u =0.5 throughout the paper. The high parame-

ter C0 is 0.5 on real scenes. To compare with ground truth

HDR views, we set C0 =CGT
0 on synthetic scenes, where

CGT
0 denotes the pixel value of ground truth CRF when in-

put logarithm radiance is 0. We use Adam optimizer [29]

(default values �1 = 0.9, �2 = 0.999 and � = 10�7) with a

learning rate 5×10�4 that decays exponentially to 5×10�5

over the course of optimization. We optimize a single model

for 200K iterations on a single NVIDIA V100 GPU (about

one day).

5.2. Evaluation Dataset and Metrics.

Dataset. We evaluate the proposed method on our collected

HDR dataset that contains 8 synthetic scenes rendered with

Blender [1] and 4 real scenes captured by a digital camera.

Images are collected at 35 different poses in the real dataset,

with 5 different exposure time {t1, t2, t3, t4, t5} at each

pose. For the synthetic dataset, we render 35 HDR views

for each scene and build a tone-mapping function to map

these HDR views into LDR images as our inputs (described

in supplementary material). The pre-defined tone-mapping

function can also be used to evaluate the discrete CRFs esti-

mated by our tone mapper. We select 18 views with differ-

ent poses as the training dataset. The exposure time of each

input view is randomly selected from {t1, t3, t5}. 34 views

with exposure time t3 or t4 at the other 17 poses are chosen

as our test dataset. Besides, the HDR views are also used

for test. The resolution of each view is 400× 400 pixels for

synthetic scenes and 804× 534 pixels for real scenes.

Metrics. We report quantitative performance using PSNR

(higher is better) and SSIM (higher is better) metrics, as

well as the state-of-the-art LPIPS [65] (lower is better) per-

ceptual metric, which is based on a weighted combination

of neural network activations tuned to match human judg-

ments of image similarity [41]. Since HDR images are usu-

ally displayed after a tone-mapping operation, we quantita-

tively evaluate our HDR views in the tone-mapped domain

via the µ-law, i.e. a simple and canonical operator that is

widely used for benchmarking in HDR imaging [26,45,59].

The tone-mapping operation is:

M(E) =
log(1 + µE)
log(1 + µ)

, (14)

where µ defines the amount of compression and is always

set to 5000, and E denotes an HDR pixel value which is al-

ways scaled to the range [0, 1]. To properly show the details

in each HDR image for qualitative evaluations, all the HDR

results are tone-mapped with Photomatix [2].

5.3. Evaluation

Baselines. We compare our method against the follow-

ing baseline methods. 1) NeRF [42]: the original NeRF

method. 2) NeRF-W [37]: unofficial implementation of

NeRF in the wild with PyTorch. NeRF-W controls the ap-

pearance of rendered views by linearly interpolating their

learned appearance vectors, which means that we can not

render views by giving the novel exposure time we expect.

To facilitate the comparison, the exposure time of input

views for NeRF-W are chosen randomly from all the five

exposure settings in order to learn five appearance vectors

for testing. 3) NeRF-GT (the upper bound of our method):

NeRF model trained from LDR views with a consistent ex-

posure or HDR views. 4) Ours† (an ablation study): our

method that models the tone-mapping operations of RGB

channels with a single MLP.

Comparisons. The quantitative results of rendered novel

views on our dataset are shown in Tab. 1. Our method out-

performs NeRF and NeRF-W on both synthetic and real
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Table 1. Quantitative comparisons with baseline methods on synthetic and real scenes. Metrics are averaged over the scenes from our

dataset (per-scene metrics are shown in supplementary material). LDR-OE denotes the LDR results with exposure t1, t3, and t5. LDR-NE

denotes the LDR results with exposure t2, and t4. HDR denotes the HDR results. We color code each column as best and second best .

LDR-OE (t1, t3, t5) LDR-NE (t2, t4) HDR

PSNR� SSIM� LPIPS� PSNR� SSIM� LPIPS� PSNR� SSIM� LPIPS�

NeRF [42]
Syn. 13.97 0.555 0.376 — — — — — —

Real 14.95 0.661 0.308 — — — — — —

NeRF-W1[37]
Syn. 29.83 0.936 0.047 29.22 0.927 0.050 — — —

Real 28.55 0.927 0.094 28.64 0.923 0.089 — — —

NeRF-GT2[42]
Syn. 37.66 0.965 0.028 35.87 0.955 0.032 37.80 0.964 0.029

Real 34.55 0.958 0.057 34.59 0.956 0.051 — — —

Ours� Syn. — — — — — — — — —

Real 30.37 0.944 0.075 29.37 0.938 0.078 — — —

Ours
Syn. 39.07 0.973 0.026 37.53 0.966 0.024 36.40 0.936 0.018

Real 31.63 0.948 0.069 31.43 0.943 0.069 — — —
1 The exposures of input views for NeRF-W are randomly selected from all five exposures to learn five appearance vectors for testing.
2 A version of NeRF (as the upper bound of our method) that is trained from LDR images with consistent exposures or HDR images.
� An ablation study of our method that models the tone-mapping operations of RGB channels with a single MLP.

Figure 3. Qualitative comparison of rendered novel LDR view with a novel exposure. The upper triangular images are the ground truth and

the lower triangular images are the rendered views. Zoom-in insets and error maps are given on the right. MSE values are on the bottom

right of error maps.

datasets. Note that only our method can output both LDR

and HDR views. Compared with NeRF-GT, our method

achieves similar performance for rendering LDR views on

the synthetic dataset, while our LDR views have a lower
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(a) (b) (c) (d) (e) (f)

Figure 4. Qualitative results of our novel LDR views and HDR views on synthetic scenes. (a–c) Our LDR views under different exposures.

(d) Our tone-mapped HDR views and (e) ground truth tone-mapped HDR views. (f) Histograms of our novel HDR view (the upper one)

and ground truth (the lower one). Better viewed on screen with zoom in.

(a) box (b) computer (c) luckycat (d) flower

Figure 5. Qualitative results of our novel HDR views on real scenes. Compared with the ground truth LDR views (the first row), our

tone-mapped HDR views (the second row) reveal the details of over-exposure and under-exposure areas.

PSNR on real scenes. We notice that our estimated CRF

of the blue channel has a bias due to the noise of training

views, as seen in Fig. 6a, which results in the lower PSNR.

As for rendering HDR views, our method is even compara-

ble to NeRF-GT, and we find that directly training the NeRF

model from HDR views is hard to produce the expected re-

sults, especially on the scene with a larger dynamic range.

In addition, we qualitatively compare our method with base-

lines on rendering novel LDR views with a novel exposure

in Fig. 3. One can see that the LDR views rendered by

our method and NeRF-GT are close to ground truth, but the

results of NeRF show serious artifacts because of the vary-

ing exposures between input views. The novel views syn-

thesized by NeRF-W appear to be acceptable, yet exhibit

inconsistent color with ground truth, as shown in zoom-in

insets of Fig. 3. Moreover, our novel LDR views with dif-
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Figure 6. Discrete CRFs estimated by our method on (a) real

flower scene and (b) synthetic chair scene. On the real scene, we

calibrate the CRF of digital camera using the method by Debevec

and Malik [12].

Table 2. A comparison of our method with 2 exposures {t1, t5}, 3
exposures {t1, t3, t5}, or 5 exposures: {t1, t2, t3, t4, t5}. Metrics

(PSNR/SSIM/LPIPS) are averaged over synthetic scenes.

LDR-OE LDR-NE HDR

2 32.39/0.954/0.040 32.76/0.950/0.036 33.00/0.949/0.040

3 37.52/0.964/0.022 35.73/0.954/0.025 37.60/0.963/0.021

5 37.73/0.968/0.020 36.26/0.960/0.022 37.86/0.969/0.019

ferent exposures are shown in Fig. 4. It validates that our

method can control the exposure of rendered views by giv-

ing a specified exposure time.

The novel HDR views are presented in Fig. 4 and Fig. 5.

It can be seen that the HDR results by our approach (Fig. 4d)

are reasonably close to ground truth HDR images (Fig. 4e).

Furthermore, compared with LDR views, our tone-mapped

HDR views reveal the details of over-exposure and under-

exposure areas. We also present the histograms of our and

ground truth HDR views in Fig. 4f. The distributions of our

histograms are similar to those of ground truth. Besides,

discrete CRFs estimated by our method are shown in Fig. 6,

which validates that our tone mapper can accurately model

the response functions of cameras.

Ablation Studies. 1) Theoretically, recovering a camera

response curve requires a minimum of two exposures [12].

We investigate the influence of the number of exposures in

Tab. 2, where the number is set to {2, 3, 5} respectively. We

can see that the performance of the proposed method im-

proves with the number of exposures. The results are close

when the number is set to 3 or 5, and both significantly out-

perform the results of 2 exposures. Thereby, using 3 expo-

sures is a reasonable choice. 2) The ablation study of unit

exposure loss Lu is presented in Tab. 3 and Fig. 7. Table 3

shows that our method produces better quantitative results

with the unit exposure loss, especially on rendering HDR

views. The HDR images rendered by the approach without

unit exposure loss suffer from severe chromatic aberration

(Fig. 7b) due to the different shifts of three estimated CRF

curves (Fig. 7d). 3) Since the RGB channels have the same

Table 3. Quantitative results with/without unit exposure loss Lu.

Metrics are averaged over synthetic scenes.

with Lu w/o Lu

PSNR� SSIM� LPIPS� PSNR� SSIM� LPIPS�
LDR-OE 37.52 0.964 0.022 36.48 0.957 0.030

LDR-NE 35.73 0.954 0.025 34.77 0.947 0.035

HDR 37.60 0.963 0.021 13.35 0.765 0.163

(a) with Lu (b) w/o Lu (c) GT
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Figure 7. Qualitative results with/without unit exposure loss Lu.

(a–c) The tone-mapped HDR views. (d) The estimated CRFs. Bet-
ter viewed on screen with zoom in.

CRF in synthetic scenes, we evaluate the efficiency of mod-

eling the CRF with three MLPs on real scenes. As shown

in Tab. 1, when three channels are processed independently,

our method achieves superior results.

Limitations. Recovering an HDR radiance field from a se-

ries of LDR images with different exposures is challeng-

ing. Similar to the classic HDR radiance map recovering

method [12], our recovered HDR radiance field is relative.

There are three unknown scaling factors (for RGB chan-

nels) that relate the recovered radiance to absolute radiance.

Consequently, different choices of these factors will recover

HDR radiance fields with different white balances. Besides,

our tone mapper models the camera coarsely without con-

sidering the effect of ISO gain and aperture for exposures.

6. Conclusion

We have proposed a novel method to recover the high

dynamic range neural radiance field from a set of LDR

views with different exposures. Our method not only ren-

ders novel HDR views without ground-truth HDR supervi-

sion, but also produces high-fidelity LDR views with speci-

fied exposures. The core of the method is modeling the pro-

cess that captures scene radiance and maps them into pixel

values. Compared with prior works, our method performs

better in rendering LDR views. Importantly, to our knowl-

edge our method is the first neural rendering method that

synthesizes novel views with high dynamic range. Code

and models will be made available to the research commu-

nity to facilitate reproducible research.
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