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Learning Reliable Gradients from Undersampled
Circular Light Field for 3D Reconstruction
Zhengxi Song, Xue Wang, Hao Zhu, Guoqing Zhou and Qing Wang, Senior Member, IEEE

Abstract—The paper presents a 3D reconstruction algorithm from an undersampled circular light field (LF). With an ultra-dense
angular sampling rate, every scene point captured by a circular LF corresponds to a smooth trajectory in the circular epipolar plane
volume (CEPV). Thus per-pixel disparities can be calculated by retrieving the local gradients of the CEPV-trajectories. However, the
continuous curve will be broken up into discrete segments in an undersampled circular LF, which leads to a noticeable deterioration of
the 3D reconstruction accuracy. We observe that the coherent structure is still embedded in the discrete segments. With less noise and
ambiguity, the scene points can be reconstructed using gradients from reliable epipolar plane image (EPI) regions. By analyzing the
geometric characteristics of the coherent structure in the CEPV, both the trajectory itself and its gradients could be modeled as 3D
predictable series. Thus a mask-guided CNN+LSTM network is proposed to learn the mapping from the CEPV with a lower angular
sampling rate to the gradients under a higher angular sampling rate. To segment the reliable regions, the reliable-mask-based loss that
assesses the difference between learned gradients and ground truth gradients is added to the loss function. We construct a synthetic
circular LF dataset with ground truth for depth and foreground/background segmentation to train the network. Moreover, a real-scene
circular LF dataset is collected for performance evaluation. Experimental results on both public and self-constructed datasets
demonstrate the superiority of the proposed method over existing state-of-the-art methods.

Index Terms—3D reconstruction, Circular light field, CNN+LSTM, Circular epipolar plane volume (CEPV).

✦

1 INTRODUCTION

H IGH-FIDELITY 3D reconstruction, which is expected to
recover real-world objects efficiently, accurately, and

more importantly omnidirectionally, has extensive applica-
tions in movie and game industries as well as in architec-
ture, archaeology, arts, and many other areas [1]. As an
emerging light field photography technique, the circular
light field forms an image volume with regular grids in a
circular arrangement. Compared with camera array based
light fields, the circular LF can determine an object with a
full 360◦view (Fig.1 (a)). With a high angular sampling rate
(i.e., usually 720 views at least to enable the redundancy),
every captured scene point corresponds to a continuously
sine-shaped curve in the circular epipolar plane image
(CEPI). When a standard perspective camera is considered,
the trajectory (Fig.1 (b)) is not just confined in a single CEPI
but also moves in a certain 3D circular epipolar plane vol-
ume (CEPV) [2]. By exploiting the geometric characteristics
of the coherent structure in the CEPV, current methods [3],
[4], [5], [6] achieve remarkable 3D reconstruction perfor-
mances from densely-sampled circular LFs.

To maintain the continuous CEPV-trajectories, the dis-
parity of an image feature must be smaller than the fre-
quency of texture around the feature [5], [6]. To accurately
estimate the local gradients of the coherent structure, several
methods [5], [6] require at least 3600 views located on a cir-
cle. Similarly, the Hough transform-based methods [3], [4],
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which rely on the local structure tensor and the binary edge
map of the CEPIs, also require at least 720 views (Fig.1 (c)).
However, establishing a circular LF imaging system with a
high angular sampling rate is cumbersome and expensive,
severely limiting practical applications. Moreover, when the
angular sampling rate decreases, the original smooth tra-
jectories will be replaced with discontinuous segments. The
discontinuation will cause ambiguity for local orientation
estimation, especially near the intersections or gaps in the
trajectory (Fig.1 (d)), and further hinder accurate depth
estimation.

To overcome these issues, we focus on estimating reliable
gradients along CEPV-trajectories to reconstruct 3D objects
from an undersampled circular LF. Despite the discontinu-
ities and aliasing effect revealed in the CEPIs, the coherent
structure still can be recovered due to the relation between
motion parallax of different angular sampling LF. Inspired
by the work for light field super resolution [7], we formulate
the coherent structure as 3D predictable series, such that
both the trajectories and their gradients are differentiable.
Therefore, it is possible to learn the mapping from the CEPV
with a lower sampling rate to the gradients under a higher
rate.

Specifically, we design a mask-guided CNN+LSTM net-
work to compute the local gradients of the CEPV-trajectories
by learning the above mapping. The core idea is that the
use of reliable segments only, rather than the full CEPV-
trajectories, helps increase the quality of the final reconstruc-
tion. To this end, a reliable mask is adopted to enable atten-
tion on reliable regions by ignoring intersections near the
occlusions or gaps with undersampling in the trajectories.

This paper makes the following main contributions.
(1) We propose to formulate the trajectory and its local
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Fig. 1. The slices of CEPV with different angular sampling rates. (c) and (d) refer to the CEPI with fixed y (the yellow plane in (b)). With decreasing
angular sampling rate, the smooth CEPV-trajectories (c) degenerate into discrete segments (d). Moreover, the visibility becomes indistinguishable
around the intersection of CEPV-trajectory (e) caused by occlusion.

gradients in the CEPV as 3D predictable series, which are
differentiable and could be utilized to reconstruct 3D objects
from an undersampled circular LF.

(2) We design a novel prediction scheme based on CNN
and LSTM to estimate the local gradients of the CEPV-
trajectories. To improve the quality of 3D reconstruction, we
integrate a reliable mask-based loss to alleviate the impact
of unreliable CEPV-regions.

(3) We render a challenging synthetic circular LF dataset
and capture a real-scene circular LF dataset for performance
evaluation. The datasets will be released to inspire more
research in this direction.

2 RELATED WORK

The previous work on 3D reconstruction here we refer to
includes different image capture techniques. For each type,
we first discuss traditional methods and then learning-based
methods.

2.1 Multi-view Stereo

The feature-based multi-view stereo methods utilize co-
herent features on different views for 3D reconstruction.
Furukawa and Ponce [8] adapt an iterative framework by
first reconstructing an initial seed of patches from feature
matching and then expanding it with coherent constraints.
However, the iterative framework leads to large irregular
holes in the region where coherent feature points are hard
to be detected and matched [9]. To achieve a complete
3D reconstruction, Geosele et al. [10] estimate high-quality
depth maps and merge them into 3D scene reconstructions.
Schonberger et al. propose COLMAP [11], [12] through
pixel-wise depth estimation, which achieves good accuracy
for diverse scenarios and public benchmarks.

Recent advances in deep learning have interested a series
of learnable systems for solving MVS problems. Huang et al.
[13] propose a DeepMVS system, which adopts the encoder-
decoder architecture for feature extraction and formulates
depth estimation as a multi-class classification problem. To
infer the depth, Yao et al. [14] build a 3D cost volume
upon the reference camera frustum via the differentiable ho-
mography warping. To combine local and global structures,
Chen et al. [15] propose a feature pyramid structure to fuse
multi-level information and then to generate a smooth depth
map for 3D reconstruction. Wang et al. [16] introduce an

iterative multi-scale Patchmatch in an end-to-end trainable
architecture for 3D reconstruction with high computation
speed and low memory requirement.

2.2 The Linear Light Field
Gortler et al. [17] and Levoy [18] reduce the 7-dimensional
light field into the 4D Lumigraph and adopt the two-
parallel-plane (TPP) model to describe a 4D light field.
The structure of the frame-to-frame pixel motion in the
EPI provides cues for geometry estimation [19]. Depth can
be estimated from the slope of the linear feature in the
densely sampled light field. Baker et al. [20] show that
the geometric characteristic cannot be uniquely determined
from the light field when the intensity of light radiated
from the scene is constant over an extended region. They
prove that the gradient is related to the scene depth via
a one-to-one basis. Wanner and Goldluecke [21] employ a
higher-order structure tensor of an EPI to obtain a fast and
robust local disparity estimation. The EPI-based analysis
shows significant advantages for 3D reconstruction [22],
such as regular sampling pattern [23], [24], dense angular
sampling [25], [26], sub-pixel disparity accuracy [21], [27],
[28], and thus becomes increasingly common for LF-based
3D reconstruction.

The ConvNet-based method further improves the light
field depth estimation performance. It is adopted by Heber
and Pock [29] to learn the mapping between the 4D light
field and the corresponding 4D depth field representation
in terms of the 2D hyperplane orientation. Then they extend
the U-shaped network structure to perform an additional
spatial regularization [30]. The EPINET [31] is constructed
by exploiting the geometric characteristics of EPIs to esti-
mate depth in narrow-baseline scenarios. Wu et al. [32], [33]
analyze the aliasing problem caused by large disparity and
non-Lambertian effect in undersampled LFs. Li et al. [34]
propose the LLF-Net for wide-baseline scenarios by incor-
porating a cost volume and an attention module. The above
methods can only reconstruct one side of the object facing
the linear LF. Although we can obtain depth from different
sides, the 3D point matching and merging procedures are
usually time-consuming.

2.3 The Circular Light Field
The circular LF sampling is suitable for omni-directional
object reconstruction. Bolles et al. [35] start to build an image
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volume to analyze the 3D position of an object and the
spatio-temporal event such as occlusion. Further, they ex-
tend their analysis to a wider class of camera motions such
as circular or hand-held camera motions. Then Feldmann
et al. [36] focus on the circular camera motion and carry
out the depth-corrected EPI analysis called the image cube
trajectory (ICT) analysis. By detecting variation-based color
consistency, they try to extract the trajectory of a CEPV
curve. Yücer et al. [5] analyze local gradient information in
the 2D EPI slice with high spatio-angular sampling. They
propose a confidence measure to segment the foreground
and background based on local gradients. They further
assess the reliability of depth estimates using a novel two-
sided photo-consistency measure [6]. However, the above
methods are based on local feature propagation relying
on smooth trajectories and thus require ultra-high angular
sampling, i.e., usually thousands of input frames/views.

Vianello et al. [4] concentrate on the curve in each CEPI
slice and solve the curve function in the Hough transform
space. The geometry of the CEPI-curve is analyzed for both
orthographic and perspective camera projection models. To
properly fit the trajectories using camera parameters, their
method requires at least 720 views and is sensitive to noise
or degeneration of continuous curves.

To alleviate the distortion problem from the pin-hole
projection, Cserkaszky et al. [37] simulate a spherical lens to
fit the distorted CEPI-curve into a standard sinusoid curve
for the synthetic scene. Instead of focusing on the 2D curve
in a single CEPI slice, Song et al. [2], [38] analyze the 3D
feature in the CEPV to improve the robustness. Still, these
methods require a high angular sampling rate, i.e., at least
180 views are needed in [2], to preserve continuous and
smooth trajectories in the CEPV.

Compared with the initial work at ICME [2], this paper
studies the predictable properties of the coherent struc-
ture in the undersampled CEPV, whose sampled rate de-
creases from 180 views to 90 views. A prediction scheme
is further proposed to take the gradients from a densely
sampled LF as supervision. By adding the attention masks
of reliable regions, the ambiguity in the local direction of
CEPV-trajectory caused by occlusion and undersampling
is mitigated. In addition, more thorough experiments and
discussions are provided.

3 PROBLEM ANALYSIS AND FORMULATION

Due to the circular layout, a scene point is projected onto
all images with different relative depths. By stacking the
images on top of each other, the projected pixels of the
same scene point form a 3D trajectory, which lives on a 2D
manifold in the CEPV [5].

3.1 3D Predictable Series with Large Disparity

As shown in Fig.2, the scene point P can be expressed using
polar coordinates (R,ϕ, Y ), whereR is the distance between
P and the rotational shaft O, ϕ is the phase offset and Y
is the vertical coordinate. If the generic scene point P is
considered, its trajectory in the CEPV L(θ, x, y) (see Fig.1(b))
can be derived as [4]:
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Fig. 2. The side view and top view of the circular LF model. P1, P2, P3

are three scene points. P2 can be expressed using polar coordinates
(R, ϕ, Y ). λ represents the ray coming from P2, of which the projected
pixel on the view is p(θ, x, y) in the CEPV L.

x(θ) = f · R sin(θ + ϕ)

Rm −R cos(θ + ϕ)
+ xc (1a)

y(θ) = f · Y

Rm −R cos(θ + ϕ)
+ yc, (1b)

where f is the focal length and Rm is the distance between
the camera center C and the rotational shaft O. (xc, yc)
denotes the camera’s principal point.

If the scene point P is projected to two adjacent cameras
Cθi and Cθj at the views θi and θj (see Fig.3), the disparity
in the CEPV between the projected positions p(θi, xi, yi) and
p(θj , xj , yj) can be expressed as follows:

d⃗ = p(θj , xj , yj)− p(θi, xi, yi). (2)

Similar to the EPI of a linear LF, when |d⃗| < 1, the CEPV-
trajectory is continuous. Otherwise, there are gaps in the
trajectory and the angular resolution of the circular LF is
considered undersampled.

Since the CEPV-trajectory is differential, the missing pix-
els in the 3D series can be predicted by the partial deviates
of Eq.1. Given the pixel p0 = (θ0, x0, y0) in the CEPV,
the position (x∗1, y

∗
1) of the corresponding pixel p1 in the

predicted view θ1 can be expressed as follows:

j
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Fig. 3. Optical path of adjacent views in the circular LF. The point P is
projected to camera Cθi with xi and Cθj with xj , respectively. When we
draw xi in Cθj with x,

i, the d between two purple pixels is the disparity.
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Fig. 4. Each CEPV-trajectory can be projected to the x−θ plane or y−θ
plane by fixing the y-axis or x-axis, respectively. p0 and p2 are the pixels
in the CEPV; p1 is the predicted pixel at discontinuity. With a specific x∗

1,
both θ11 and θ21 can be solved on the x − θ plane. Such ambiguity can
be removed on the y − θ plane, where θ11 and θ21 relate to y∗1 and y2
respectively.
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Fig. 5. The partial derivatives of x(θ) and y(θ) of CEPV-trajectories of
the 3 scene points in Fig.2. P1 and P2 share the same phase offset
but different radii, while P1 and P3 share the same radius but different
offsets.

x∗1 =

∫ θ1

θ0

∂x

∂θ
dθ + x0 (3a)

y∗1 =

∫ θ1

θ0

∂y

∂θ
dθ + y0, (3b)

where ∂x
∂θ , ∂y

∂θ are the partial derivatives of x, y with respect
to θ, respectively.

To better understand the 3D predictable series, the CEPV-
trajectory is projected to the x − θ plane and y − θ plane
in the CEPV respectively, as shown in Fig.4. When the pixel
position x∗1 is fixed, two corresponding pixels p11, p

2
1 drop

into the views θ11, θ
2
1 respectively [38] (see Fig.4(a)). How-

ever, such ambiguity can be distinguished by considering
the y component. Therefore, we propose to model the CEPV-
trajectories as 3D predictable series.

3.2 Depth from 3D Gradients Series

The 3D gradients along the CEPV-trajectory depict the dis-
parity d⃗ between adjacent views, which is tangential to
the CEPV-trajectory on the 2D manifold in the CEPV L.
According to Eq.1, the 3D gradients in x and y directions
can be modeled by the partial derivatives,

∂x

∂θ
= f · RmR cos(θ + ϕ)−R2

(Rm −R cos(θ + ϕ))2
(4a)

∂y

∂θ
= f · Y R sin(θ + ϕ)

(Rm −R cos(θ + ϕ))2
. (4b)

The trajectory function is continuous and differentiable
[4], and its second derivative is also differentiable. Follow-
ing Eq.3a, given the pixel p = (θ0, x0), its partial derivatives
in view θ1 can be predicted as,

∂x(θ)

∂θ

∣∣∣∣
θ=θ1

=

∫ θ1

θ0

∂2x(θ)

∂θ2
dθ +

∂x(θ)

∂θ

∣∣∣∣
θ=θ0

. (5)

Fig.5 illustrates the distribution of gradients under dif-
ferent θ, i.e., (∂x∂θ ,

∂y
∂θ ). Both ∂x

∂θ and ∂y
∂θ move along the CEPV-

trajectory rather than stay on a single slice. Therefore, the 3D
gradients could be considered as 3D predictable series.

Given a circular LF imaging system, usually Rm is
far larger than Y and R. Thus the partial derivative ∂x

∂θ
dominates the variation (refer to Eq.4). Based on the above
3D predictable series analysis, the depth of a scene point
in the reference view θi can be deduced from the gradient
∂x(θ)
∂θ |θ=θi with triangulation,

tan(αj) =
(x− xc)

f
(6a)

tan(αi) =
(x− xc + ∂x(θ)

∂θ |θ=θi)

f
(6b)

depth =
2Rm cos(αi) sin(θ/2) cos(αj − θ/2)

sin(θ + αi − αj)
. (6c)

where αi and αj are illustrated in Fig.3.

3.3 Problem Formulation

Through triangulation, the depth of the 3D object can be
derived from the partial derivatives of the CEPV-trajectory.
However, such gradients based on local features suffer from
the ambiguity of two folds.

(1) The undersampling issue. The smooth trajectories
decay into discrete segments and other artifacts when the
angular density is undersampled (see Fig.1(c)(d)). Then local
gradients will be affected by the additional structure around
the discrete segments. The disparities between adjacent
views can be approximated by the local gradients from a
smooth and continuous CEPV-trajectory. According to the
structural property of the trajectory (see Eq.3a), it is possible
to learn the mapping from a deteriorated CEPV-trajectory to
its gradients from a denser circular LF.

(2) The occlusion event. The occlusion-free scene point
results in a continuous coherent structure in the CEPV.
The unaffected local regions on the CEPV are all reliably
available for depth estimation. However, when the trajecto-
ries intersect with each other due to occlusion, the ground
truth gradient in the reference view is calculated without
considering the point’s visibility in adjacent views (see
Eq.6). Hence, the occlusion regions on the CEPV will bring
ambiguity for the network to estimate local gradients (see
Fig.6(d)). It is nature to consider excluding occlusion regions
out for estimating local gradients.
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(a) CEPI (c) Reliable mask(b)  Error map

(d) Occlusion event (e) Undersampled situation 

.

Fig. 6. An example of the reliable mask. (a) shows the CEPV-trajectories
with 90 views. (b) shows the error map between predicted gradients and
the ground truth after 50 training epochs. (c) is the reliable mask with
ϵ = 0.1. (d) and (e) correspond to the ambiguity discussed in Sec.3.3.

To reconstruct a 3D object from an undersampled cir-
cular LF, we define the ground truth segmentation s as
the imaging region of the rays from the objects inside the
camera rig. For each ray γ in the observation space to the
view (see Fig.2(b)), the foreground threshold depththr is,

depththr = 2Rm(cosα)2. (7)

The ground truth segmentation s is computed as follows:

s =

{
1 depthgt < depththr
0 otherwise.

(8)

Consider a given CEPV L ∈ RΘ×X×Y , where X and
Y denote the embedded space defined by the spatial coor-
dinates, and Θ denotes the angular embedded space. The
learning-based local gradients can be estimated as follows:

[ĝ(θ, x, y), ŝ(θ, x, y)] = f(L(θ, x, y); Ψ), (9)

where Ψ =
{
ψ(0), ψ(1), ..., ψ(K−1)

}
represents the parame-

ters of the networks, and f(·) describes the learned mapping
from the CEPV to trajectory gradients at a higher angular
rate. ĝ and ŝ are the output gradients and segmentation
respectively.

All parameters of the model are optimized to reduce the
loss L(·), which is defined in Sec.4.3. Thus, the problem can
be formulated as follows:

Ψ∗ = argmin
Ψ

L([g, s], f(L; Ψ)), (10)

where g is the ground truth gradients from a higher angular
sampling rate with continuous trajectories.

The network directly learns the mapping f(·) and esti-
mates the reliable gradients in a single feed-forward propa-
gation.

4 METHOD

To address the challenges posed by undersampling and
occlusion, we propose a mask-guided CNN-LSTM network

to learn the mapping from the CEPV of an undersampled
circular LF to the CEPV-trajectory gradients of the LF with
a higher angular rate.

4.1 Training Pairs

We use the publicly available software for creating 3D
graphics to render circular LFs with ground truth depths
for all the views. With the known depths, the per-pixel
ground truth gradients g of CEPV-trajectory corresponding
to any specific angular resolution can be computed by Eq.6.
Then the ground truth foreground mask s is computed
by Eq.8. The gradients from a denser LF convey the in-
formation helpful for reconstructing continuous trajectories
from broken segments. Since the CEPV-trajectories and their
gradients are both predictable series, a neural network can
be designed to learn the mapping between them.

Considering the trajectory of a point moving in a limited
range in the y-direction during the rotation, we use the
sliding window strategy along the y-direction. Given a
circular LF with 90 views, we set Y to 11 and calculate
the gradient and segmentation of the central xθ-plane in
the y-stacked CEPV. The supervision is the ground truth
gradients and foreground segmentation computed from the
corresponding CEPV with 180 views.

4.2 Network Architecture

The architecture of the proposed network is illustrated
in Fig.7. Based on the 3D predictable property, a CEPV
(90×400×33) stacks in the y-axis as input, then it is upsam-
pled to volume of 180 × 400 × 33. Firstly, the up-sampled
volume is fed into a U-shaped CNN-LSTM network. After
that, the learned gradients and the up-sampled volume are
concatenated. Then, they are exploited by two dense-block
layers to distinguish a reliable foreground segmentation.

The CNN-LSTM network has four levels, each used to
analyze the CEPV at different resolutions. Four convolu-
tional layers are applied to encode local information on the
top three levels. Then two convolutional LSTM layers are
cascaded to extract the series features in top-down and left-
right directions sequentially. Noting that, given a h× w × c
volume (h, w and c refer to the height, width and channels,
respectively), it is separated as h × 1 × c with length w
and 1 × w × c with length h series in left-right and top-
down LSTM layers, respectively. The kernel sizes of the
convolutional LSTM layers are 3 × 1 and 1 × 3 in left-
right and top-down directions, respectively. The channel
size is 100 (Fig.7). Later, the outputs from top-down LSTM
layers are concatenated with the up-convolutional results
from a higher level, and then are decoded with another four
convolutional layers. There are six convolutional layers in
the highest 4-th level. Neighboring levels of the CNN-LSTM
are connected with down and up-convolutional layers. The
kernel size of all convolutional layers is 3 × 3. The channel
size for the i-th layer is min(60 × i, 180), i = 1, 2, 3, 4.
After the CNN-LSTM network, the ∂x

∂θ is extracted. Finally,
two standard dense-blocks are applied to segment reliable
foreground regions. Each dense-block contains 4 layers.
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Fig. 7. The architecture of the proposed network. The pipeline contains three parts. The prediction scheme starts with an upsampling processing.
The second part is to learn gradients from the CEPV. The third part concatenates original CEPV and gradients for predicting the reliable region.

4.3 Loss Function

The occlusion is still challenging from two folds. First, the
ground truth foreground mask can only prevent disturbance
from the background. The self-occlusion is not considered.
Moreover, as discussed in Sec.3.3, the ground truth gradi-
ents are computed from depthθigt without accounting for the
visibility in adjacent views. If a scene point is visible in view
θi but occluded in view θj , the ground truth gradients still
correspond to the occluded pixel.

Based on the observation that the learned gradients de-
viate significantly at the intersections of CEPV-trajectories,
the network output provides a clue for the occlusion event.
The basic idea is that, if a region tends to bring ambiguity
for computing gradient due to occlusion, we just discard it
and refer to other unaffected gradients for depth estimation.
We define a reliable mask s̃ to discount a dynamical region
during training,

s̃ =

{
1 |g − ĝ| < ϵ

0 otherwise,
(11)

where ϵ is the threshold for identifying reliable regions of
which the gradients are close to the ground truth.

Discounting the occluded region does not affect depth
estimation. Each CEPV-trajectory corresponds to a scene
point. Therefore its per-pixel gradients are redundant for
depth estimation. Fig.6 illustrates an example of reliable
mask. The reliable mask can eliminate the occlusion event
region (the yellow circle of (d)) where the CEPV-trajectory
intersects. The undersampling region can also be removed
(the yellow circle of (e)) since the difference is large when
CEPV-trajectories fade into discrete segments.

The loss function contains four terms, 2 of which are for
gradients optimization and 2 for segmentation.

L = Lŝ(g) + λ1Ls(g) + λ2Ls(ŝ) + λ3Ls̃(ŝ), (12)

where λi, (i = 1, 2, 3) are the weights of the loss terms.
Lŝ(g) andLs(g) are theL1 loss of gradients predictions with

the output foreground mask and the ground truth mask
respectively,

Lŝ(g) =
1

|ŝ|
∑

p∈{ŝ=1}

|g(p)− ĝ(p)|,

Ls(g) =
1

|s|
∑

p∈{s=1}

|g(p)− ĝ(p)|.

Ls(ŝ) and Ls̃(ŝ) are the cross entropy losses of the output
segmentation with the ground truth and the reliable mask
respectively,

Ls(ŝ) =
∑
p

s(p) ∗ log(ŝ(p)),

Ls̃(ŝ) =
∑
p

s̃(p) ∗ log(ŝ(p)).

4.4 Algorithm

The whole procedure of our algorithm is shown in Algo-
rithm 1. Specifically, given a 3D CEPV as input, we first
calculate the gradients and their corresponding segments of
the central xθ-plane in the y-stacked CEPV. Based on Eq.6,
the depth can be computed by the learned gradients. We

Algorithm 1 3D reconstruction algorithm from the CEPV
Input: The 3D CEPV L(θ, x, y) with parameters of the CLF
Output: The reconstructed point cloud PC
1: for y = 1:Y do
2: Stacked CEPV: L(θ, x, (y −∆y) : (y +∆y))
3: Obtain ĝ(θ, x, y) and ŝ(θ, x, y) via Eq.9
4: depthθ ← D(ĝ(θ, x, y), ŝ(θ, x, y)) via Eq.6
5: for θ = 1:Θ do
6: PCθ ← depthθ via Eq.13
7: for β = (θ −∆θ) : (θ +∆θ) do
8: PCθ ← depthβ · ŝ(β, x, y)
9: PC ← PCθ ∪ PC

10: return PC
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then map the depth of each view θ into a 3D point cloud
(PC) as,

PCθ :


R =

√
(tan(α)depth)2 + (Rm − depth)2

ϕ = arccos
(
Rm−depth

R

)
− θ

Y = depthy−yc

f .

(13)

Then we project PCθ to depth on neighbour views β =
(θ−∆θ) : (θ+∆θ) (we set ∆θ = 30◦ in the experiment) by,

depthβ = (Rm −Rcos(β + ϕ))ŝ, (14)

where ŝ is used to segment the reliable region, and further
back project the depth in the PCθ. For each view, we repeat
this step and merge all PCθ in to the final PC.
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Fig. 8. Examples of 4 circular LF datasets. igl [5] is captured with the
camera mounted on a boom rotating around the object. Our Synthetic
data is rendered by POV-Ray [39]. Here shows the chessboard-plant
scene. RHT [4] is rendered by Blender [40] with both specular and
Lambertian surfaces. For our real dataset, the reconstructed object is
staged on a high precise turntable with a controllable rotation interval.

5 EXPERIMENT

5.1 Dataset
Four datasets are used to evaluate the performance com-
pared to different baseline methods, whose details are sum-
marized in Table 1. The igl [5], captured from the natural
scene, provides the sub-images, the calibration parameters
on each, and the point cloud computed from a 3600-frame
Circular LF. We take this point cloud as ground truth and
generate the ground truth depth and foreground mask with
camera parameters. RHT [4] renders the synthetic budda
dataset with specular and Lambertian surfaces. The ground
truth point cloud is also provided. We further compute the
ground truth foreground mask for this dataset. We also
self-construct a novel synthetic dataset and a real dataset.
The synthetic dataset provides the ground truth foreground
mask, depth, and point cloud. The real dataset provides only
the sub-image and foreground mask.

0 0  0 40 
0 80 (a) (b) (c)

Fig. 9. Data augmentation for a slice of CEPV by shifting the start view.
The first row is a slice of CEPV and the second row is the corresponding
ground truth gradients g.

We design the synthetic datasets for the training and
ablation study and capture the real-scene datasets for the
SOTAs comparison. For synthetic datasets, we render 150
circular LFs using the POV-Ray, 100 for training, and 50
for testing, which contain various challenging environments
such as occlusion, shadowing, reflection, and structures
with fine details. Fig.8 shows examples of the sub-view
image, the foreground mask, depth map, and GT point
clouds for four datasets. Since the extended circular LF Lθ0

TABLE 1
Details of 4 circular LF datasets used in experiments. The term ‘Num.’

refers to the number of circular LFs. The term ‘Res.’ refers to the spatial
resolution. The term σ refers to the pitch size of the sensor. The term f

refers to the focal length.

Setting igl [5] Synthetic RHT [4] Real
Num. 5 150 2 5
Views > 3600 180 720 360
Res. 1920×1080 400×400 1001×1001 4256×2832
f(mm) 24 20 18 48
σ(µm) 28 57.8 6 8.4
GT Mask ✓ ✓ ✓ ✓
GT depth ✓ ✓ × ×
GT PC ✓ ✓ ✓ ×

is periodic, any view can be chosen as the start view θ0 and
the CEPV-trajectory is still continuous but with a diversified
pattern. We augment the training data by shifting the start
view θ0. Fig.9 demonstrates the augmentation process by
changing start views, e.g., θ0 = 0, θ0 = 40, and θ0 = 80.
Both the CEPV and their corresponding gradients are aug-
mented simultaneously. Additionally, the training data is
augmented by exchanging RGB channels.

We put objects on a high-precision rotation stage for
the real-world scene data. The calibration is performed
to remove distortion and determine the correct rotation
center. The real-world and synthetic circular LFs datasets
will be available to the research community to facilitate
reproducible research.

5.2 Training Configuration
The network is trained with the input CEPV with 90 views
and the gradients from 180 views. The network training is
conducted by using the TensorFlow framework [41], and the
parameter λ1 is set as 1. λ2 and λ3 change with the epoch,
that λ2 = 3×0.8⌊i/10⌋, λ3 = 0 in the previous 50 epochs and
becomes 1.15⌊i/10⌋ after the 50-th epoch; here i is the epoch
index. Note that λ3 is initially zero because the network
in the first few epochs is unstable. We use the Adam [42]
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optimizer. The learning rate is 1e− 4 initially and decreases
0.99. All convolutional kernels and bias are initialized using
the Xavier method [43].

5.3 Ablation Study
This section evaluates the performance of each component
proposed in the mask-guided CNN+LSTM on our 50 ran-
domly generated synthetic scenes. Table 2 gives the average
quantitative statistic of all 50 datasets.

We use three evaluation metrics for comparison. The
first two are between ground truth and reconstructed PC.
For evaluation, the obtained PC is aligned with the ground
truth utilizing the iterative closest point (ICP) algorithm
[44]. We compute (1) the RMSE1 (Root Mean Square Error)
[45]; (2) the percentage of bad matching points (BP) through
the Hausdorff distance2 [3], between two aligned PCs. The
Root Mean Square Error of Depth (RMSE(D)) is the third
evaluation metric, measuring the difference between the
ground truth and the learned depth map on all views.

The ablation study is firstly carried out progressively to
show the improvements gained by each proposed compo-
nent. The baseline network (CNN+LSTM) is trained from
the CEPV to ground truth gradients with the same angular
resolution (90 views). With this undersampled circular LF
(90 views), the CEPV-trajectory and its local gradients turn
into discrete segments. Then it is hard to estimate the
proper depth of reconstructed object between these two
deteriorated trajectories, as the baseline results are shown
in Table 2.

To justify the effectiveness of our proposed network
architecture, we also conduct the ablation study by substi-
tuting each element in our design, as eliminating the LSTM
module, replacing 3D convolution kernel with a 2D kernel,
and reducing the four-layer network to a two-layer one.
Our proposed method (Baseline+Prd+RM) achieves the best
performance on both point cloud and depth map.

TABLE 2
The ablation study on our synthetic dataset. The term ‘RM’ refers to the

reliable-mask-based loss.The term ‘Prd’ refers to the prediction
scheme.

RMSE BP RMSE(D)
Baseline (3D+4Layers+LSTM) 1.2100 0.6194 1.2238
Prediction (Baseline+Prd) 0.4731 0.1934 0.4042
Ours (Baseline+Prd+RM) 0.4334 0.1893 0.3318
Ours (3D+4Layers+Prd+RM) 0.4523 0.1941 0.3334
Ours (2D+4Layers+LSTM+Prd+RM) 0.4500 0.1924 0.3388
Ours (3D+2Layers+LSTM+Prd+RM) 0.5377 0.2292 0.3576

5.3.1 Prediction scheme
The prediction scheme will up-sample the CEPV from 90 to
180 views by Bicubic sampling. Furthermore, the network
is trained with the CEPV at 90 views and ground truth
gradients from 180 views. Even though the CEPV-trajectory
falls into discrete segments, the series of local gradients
at 180 views reveals increasing continuity. The prediction

1. We use the function packepcregistericp in Matlab2021
2. This operation is performed with Meshlab [46] to compute the

percentage of PCs larger than 5mm

w/o. prediction w. prediction
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Fig. 10. Comparisons between the ground truth and the estimated
gradients of our networks with or without the prediction scheme. Here
are examples of 3 scenes with one sub-image and one xθ-slice of the
CEPV. The error map between the predicted and ground truth gradients
are illustrated in columns III and IV.

scheme motivates the network to predict the local gradients
in a higher angularly sampled circular LF, which is more re-
liable to estimate depth. As shown in Table 2, the prediction
scheme improves the performance significantly on all three
metrics.

Fig.10 visualizes the error maps of 3 different scenes in
rows from networks with or without the prediction scheme.
The MSE is marked on the top-right of each error map. The
first scene is related to a chair with a texture-less surface.
The second scene is more challenging, composed of a plant
and a chessboard with a reflective surface. Moreover, the
third scene has two kettles occluding with each other.

With undersampled circular LF at 90 views, the smooth
CEPV-trajectories disappear due to aliasing and are replaced
by discrete segments and additional structures arising from
scene texture. The MSE is large for the result without
the prediction scheme, especially in regions with discrete
segments (see the 3rd column of Fig.10). Based on the
predictable series discussed in Section 3.1, both the CEPV-
trajectory and its partial derivative are differential and
further predictable. The gradients from continuous CEPV-
trajectories are prone to the proper depth of reconstructed
objects. Thus, the prediction scheme improves the perfor-
mance by learning the gradients from a 180-view circular
LF (see the 4th column of Fig.10).

5.3.2 Reliable-mask-based loss
By combining the reliable-mask-based loss, the quantitative
results of both PC and depth map are further improved, as
shown in Table 2. The ground truth gradients are computed
with known depth from Eq.6, in which the occlusion is not
considered. The difference between the learned and ground
truth gradients varies where CEPV-trajectories intersect.
Thus, the reliable mask is designed to neglect these regions.

We illustrate the CEPIs and error maps between the
learned and ground truth gradients of two scenes in Fig.11.
The MSE of learned gradients with reliable-mask-based
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Fig. 11. Comparisons between the ground truth and the estimated
gradients of our networks with or without the reliable-mask-based loss.
Here are examples of 2 scenes with one sub-image and one xθ-slice
of the CEPV. The error map between the predicted and ground truth
gradients are illustrated with insect focusing on the intersection regions.

loss is smaller than that of the one without reliable-mask-
based loss. Both scenes suffer from the thin structure, and
the corresponding CEPV-trajectories are twined. The insets
(the yellow and red box) in Fig.11 illustrate that the error
is smaller from the result with the reliable-mask-based
loss, especially when the broken CEPV-trajectories intersect.
Therefore, the the proposed method that adds reliable-
mask-based loss is more robust in the occlusion events.

5.4 Comparison with SOTAs

5.4.1 Synthetic scene

We perform experiments on the data obtained from RHT,
as shown in Table 1. Since the original circular LF has 720
views, we downsample it to 90 views, which degenerates
the CEPV-trajectory into broken segments with aliasing.

The comparison is performed with seven SOTA meth-
ods, including traditional MVS-based methods, EPI-based
methods and learning-based 3D reconstruction. All the re-
sults are obtained using the codes released by the authors,
except the Robust Hough Transform method (RHT) [4]. We
self-implement the algorithm since the code has not been re-
leased yet. We also compare with our previous network [2],
which requires the circular LF with 180 views. For CLSTM,
we directly up-sample the original CEPV from 90 to 180
views and feed them into the trained network. For our
method without the reliable-mask based loss, we re-train
the network using the circular LF with 90 views.

Table 3 demonstrates the RMSE, chamfer distance [47],
and BP with two thresholds (0.2mm and 0.5mm) of the
whole PCs in both Lambertian and Specular cases. Their
corresponding distributions of the Hausdorff distance are
illustrated in Fig.13.

All the MVS-based methods provide sparse recon-
structed PCs. CMVS fails on both datasets and generates
lots of wrong PCs. Due to occlusion and reflection, MVE
shows large numbers of mismatched features. Colmap pro-
vides the most accurate result with the Hausdorff distance
under 0.2mm. However, comparing to the learning-based
approaches, it is still a sparse result which only reconstructs
3.37% of the GT points (4675307 in total).

RHT is based on estimating the depth of each CEPI and
merging them into PC with standard circular parameters.
To detect and model the CEPV-trajectories, RHT [4] requires
circular LF with 720 views. It relies on the smooth and
continuous structure of the CEPI for the Hough voting.
With undersampled circular LF, the broken segments and
the additional structure of the CEPI affect both the feature
detection and geometry estimation.

MVSNet is robust in the Lambertian case, with the min-
imum BP and chamfer distance. However, it generates the
sparsest result. PmNet performs best under BP-0.5mm in
the Lambertian case. However, its performance degenerates
significantly for specular surfaces.

CLSTM also suffers from the degeneration of CEPV-
trajectories. It directly feeds the up-sampled CEPV to the
trained network. The two versions of our methods, i.e. with
and without the reliable-mask based loss, both learn the
mapping from a 90-view CEPV to the ground truth gra-
dients from a 180-view circular LF by adding the prediction
scheme. The result is further improved for the occlusion
situation (near the noise region) by adding the reliable-
mask-based loss.
5.4.2 Real scenes from igl [5]
We use the public circular LF datasets from igl [5] to evalu-
ate the performance of our proposed method on real scenes.
The datasets provide the PCs computed from dense LFs
with 3600+ views. Then the estimated results are used as
ground truth for quantitative comparison. The datasets also
provide calibration parameters. By projection the GT point
clouds onto each view, we obtain the GT depth. According
to Yucer et al. [5], a camera is mounted on a boom rotating
around the object for capturing the views. The original
3600 views are down-sampled to 90 views to obtain an
undersampled circular LF. We provide the BP-5mm, RMSE
and Chamfer distance of the reconstructed point clouds in
Table 4. Also, the evaluation on depth in term of L1, MSE,
and BP-2mm is shown in Table 5. In these two tables, the
term ‘Scare.’ refers to the Scarecrow scene.

The CMVS method [8] achieves sparse PCs for only one
side of the reconstructed object. The reconstructed result by
MVE [10] tends to be affected by cluttered background. The
background noise sticks to the reconstructed surface, caus-
ing significant errors for both reconstructed PCs and depth.
Colmap is most competitive among the traditional MVS-
based methods. However, all these MVS-based methods
could only provide sparse reconstruction, and even Colmap
can reconstruct 1.76% of the GT PCs on average.

The EPI-based methods, which require dense angular
sampling, work well when CEPV-trajectories are continuous
without distortion. RHT [4] fails on this dataset due to the
undersampling and distortion from the capture device. The
camera is mounted on a boom rotating in a circle with a
slight vibration in the Y -direction. Such degeneration causes
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Fig. 12. Distributions of the Hausdorff distances of reconstructed point clouds at different angular resolutions. The first row illustrates training pairs
of the CEPI and corresponding gradients under different angular resolutions.

TABLE 3
Data from RHT: the number of 3D points, RMSE, BP, and CD of whole point clouds of baseline methods and ours. The terms ‘LBT’ and ‘SPC’ refer

to the Lambertian and the Specular respectively. The term ‘CD’ refers to the Chamfer distance.

Metric CMVS [8] MVE [10] Colmap [11] RHT [4] MVSNet [14] PmNet [16] CLSTM [2] Ours w/o RM Ours
Num.(×e+6) 0.0050 0.6767 0.1570 3.4867 0.3097 4.8966 4.1314 3.8863 3.6228

RMSE 1.8879 1.6859 0.3723 4.0005 0.3837 0.4671 0.3810 0.3753 0.3691
LBT BP-0.5 0.7752 0.6386 0.0152 0.7054 0.0155 0.0132 0.0663 0.0372 0.0149

BP-0.2 0.9896 0.8133 0.2487 0.9099 0.2896 0.2683 0.4662 0.3713 0.3142
CD 3.3591 2.6486 0.6474 6.1308 0.4724 0.6501 0.5837 0.5779 0.4160

Num.(×e+6) 0.0052 0.3255 0.1190 3.2232 0.3076 4.7970 3.9681 3.7318 3.5049
RMSE 3.0626 1.8850 0.3931 4.5517 0.3915 0.4713 0.5577 0.3953 0.3871

SPC BP-0.5 0.7769 0.7091 0.0455 0.7333 0.0257 0.1337 0.2034 0.0507 0.0373
BP-0.2 0.9961 0.8391 0.2747 0.9412 0.2065 0.3770 0.5424 0.5774 0.3141

CD 3.4511 2.9155 0.6656 6.6878 0.4642 0.6613 0.7390 0.5838 0.5779

(a) CMVS [8] (b) MVE [10] (d) RHT [4] (f) Ours
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Fig. 13. Reconstruction results of 3D object in dataset with Lambertian and specular surfaces [4] and Hausdorff distances under 5mm obtained
by different methods. From left to right: the results by CMVS, MVE, Colmap, RHT, MVSNet, PmNet, CLSTM, our method without the reliable-mask
based loss and the our complete method.

irregular features in trajectories of each 2D CEPI, leading the
Hough to vote for improper parameters.

The learning-based methods are good at finding proper
feature correspondence. Based on patch matching, the re-
sults from the PmNet achieve the densest reconstruction
among all other methods. The MVSNet fails on the scene
of Orchid, which contains a tiny thin reconstructed object
against a complex background.

Our method performs better than CLSTM [2] and Ours-
w/o. RM since both the prediction scheme and reliable-
mask-based loss are designed for undersampled circular LF.
By predicting the gradients on CEPV, we can achieve per-
pixel depth estimation. We show competitive performance

on the PCs and also depth maps.
5.4.3 Real scenes from our dataset
We also conduct experiments on our collected real-scene
datasets and carry out visual comparisons with SOTAs, as
shown in Fig.14. For the circular LF with 90 views, the
MVS-based methods suffer from low accuracy and severe
noise. The results by CMVS degenerate into sparse PCs, and
the results by MVE are noisy on the reconstructed surface.
Colmap performs best among traditional MVS-based meth-
ods. But it only reconstructs sparse PCs, which would lose
details for tiny structure.

RHT also fails due to undersampling and brings sparse
results near the rotational shaft. The broken trajectories are
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TABLE 4
Data from igl: the number of 3D points, BP, RMSE and CD of point
clouds by baseline methods and ours. The term ‘PmNet’ is short for

PatchmatchNet.

Metric Orchid Plant Scare. Ship Statue
GT Num.(×e+6) 2.1795 7.2881 4.9407 6.5992 6.5571

Num.(×e+3) 1.5880 3.2760 2.3430 6.2360 3.1600
CMVS BP 0.0309 0.8834 0.2808 0.0438 0.1307
[8] RMSE 0.3070 2.9196 0.5397 0.2342 0.3416

CD 0.4022 2.8863 0.8601 0.4633 1.0000
Num.(×e+5) 0.0349 1.6477 1.8897 2.8313 3.2871

MVE BP 0.7149 0.3512 0.4726 0.1404 0.6023
[10] RMSE 1.4969 0.5177 0.7187 0.3880 1.1551

CD 1.6126 0.7263 0.8603 0.4646 1.1879
Num.(×e+5) 0.5045 1.3657 0.6671 1.1829 0.9631

Colmap BP 0.0123 0.0732 0.0952 0.0085 0.1235
[11] RMSE 0.1114 0.4002 0.2805 0.5661 0.4178

CD 0.1579 0.2428 0.1503 0.2551 0.3829
Num.(×e+6) 1.3710 1.9915 2.6639 2.9897 2.2522

RHT BP 0.9123 0.8745 0.8931 0.8595 0.9019
[4] RMSE 7.1229 6.7809 6.6534 6.5539 6.7722

CD 7.3212 7.1438 7.0419 7.6485 7.9185
Num.(×e+5) NaN 3.7338 0.8275 1.1112 0.9695

MVS- BP NaN 0.3959 0.4154 0.2229 0.4228
Net [14] RMSE NaN 0.2678 0.2265 0.1918 0.3245

CD NaN 0.1993 0.1629 0.2332 0.1364
Num.(×e+6) 0.9077 4.8004 2.0564 3.8230 3.9043

PmNet BP 0.0028 0.0029 0.0434 0.0046 0.2438
[16] RMSE 0.0901 0.3820 0.2096 0.1713 0.4315

CD 0.1482 0.2533 0.0506 0.1923 0.1193
Num.(×e+6) 0.6949 2.4621 1.1070 1.2646 1.8047

CLSTM BP 0.0474 0.0580 0.0056 0.0056 0.0048
[2] RMSE 0.1161 0.2806 0.1921 0.1984 0.1818

CD 0.0883 0.2777 0.5014 0.1781 0.3095
Num.(×e+6) 0.6054 2.3601 0.9236 1.0894 1.6017

Ours BP 0.1036 0.0771 0.0481 0.0077 0.0602
w/o RM RMSE 0.1533 0.4364 0.2039 0.1881 0.2709

CD 0.0928 0.3129 0.4455 0.1851 0.2626
Num.(×e+6) 0.5658 2.2378 0.8975 0.7060 1.5218
BP 0.0017 0.0372 0.0002 0.0021 0.0024

Ours RMSE 0.0731 0.2591 0.1691 0.1714 0.1627
CD 0.0822 0.2757 0.0710 0.1731 0.1640

twined together near the rotational shaft, where is mainly
occluded. It increases the challenge to estimate the proper
local direction for structure tensor. Then the Hough voting
will accumulate to improper parameters for depth estima-
tion.

MVSNet suffers from holes in the reconstructed surface,
especially where the visibility is complex. PmNet performs
best among learning-based MVS methods. However, it fails
to reconstruct boundary details, such as the ear of the Ziggs
and the foot of the Optimus Prime.

The results by CLSTM also suffer from distortion and
noise to a certain compared to ours. Using the prediction
scheme improves the reconstructed outcomes with lower
noise. After training with the reliable-mask based loss,
our method achieves accurate and dense results, even on
the Stone scene, which is challenging due to homogenous
textures and reflective surfaces.

5.5 Discussions
5.5.1 Different angular resolutions
To analyze the influence of the angular resolution of the
circular LF on the reconstruction results, we conduct experi-
ments with various angular resolutions to evaluate the gen-
eralization ability of our proposed method. Table 6 shows

TABLE 5
Data from igl: the BP, MSE, and L1 on depth maps by baseline methods
and ours. The term ’DpMVS’ is short for DeepMVS, which only provides
the result of depth map. CMVS only provides the result of point clouds.

Metric Orchid Plant Scare. Ship Statue
BP 0.9938 0.9647 0.9559 0.9820 0.9120

MVE MSE 27.8006 17.9377 6.6326 14.2523 5.3812
[10] L1 5.2285 4.3574 2.5478 3.7087 2.2920

BP 0.1741 0.0036 0.2726 0.0444 0.1190
Colmap MSE 5.4871 1.9603 2.8525 0.7794 1.7488
[11] L1 1.9056 1.3697 1.4259 0.5390 1.1575

BP 0.9373 0.8906 0.8868 0.9443 0.9006
RHT MSE 24.1109 10.8422 5.2899 12.6579 5.1396
[4] L1 4.8499 3.3048 2.2130 3.4741 2.2266

BP Nan 0.0037 0.2524 0.0465 0.1648
MVS- MSE Nan 1.9912 2.5519 0.8389 1.9276
Net [14] L1 Nan 1.3936 1.3446 0.6009 1.2431

BP 0.1624 0.0037 0.3120 0.0791 0.1850
PmNet MSE 3.1125 1.9917 3.6278 1.2595 2.1224
[16] L1 1.7401 1.3939 1.6745 0.6758 1.3026

BP 0.1453 0.2702 0.0402 0.0152 0.0210
DpMVS MSE 3.0486 3.3176 1.4081 0.4811 1.5605
[13] L1 1.6106 1.7843 1.0976 0.4542 1.1933

BP 0.0279 0.0053 0.0444 0.0024 0.0988
CLSTM MSE 1.0540 1.1756 1.3760 0.3170 2.0097
[2] L1 0.9902 1.0536 1.1063 0.4627 1.3409

BP 0.0036 0.0039 0.0141 0.0018 0.0198
Ours MSE 0.9953 1.0128 0.9557 0.2676 1.2882
w/o RM L1 0.9657 0.9430 0.9236 0.4336 1.0867

BP 0.0024 0.0032 0.0078 0.0015 0.0141
Ours MSE 0.9614 0.9116 0.8105 0.2570 1.1931

L1 0.9441 0.8637 0.8393 0.4289 1.0448

TABLE 6
Quantitative comparison on the network trained with the CEPV and

ground truth gradients from LFs with various angular rates. A→B refers
to a network trained with the CEPV of A views and supervised by the

ground truth gradients of B views.

CEPV → gradients RMSE BP RMSE (D)
45→90 1.2150 0.7121 1.2502
90→90 1.0100 0.6078 1.1478
30→180 0.9085 0.6364 0.5716
45→180 0.4776 0.4107 0.4650
90→180 0.4334 0.1893 0.3318
180→180 0.3727 0.1586 0.2227

the average RMSE, BP, and RMSE(D) on the randomly
generated 50 synthetic circular LFs. Correspondingly, Fig.12
visualizes the error distribution at different angular resolu-
tions. With the same angular rate for gradients, all metrics
indicate that the noise increases with the decreasing angular
rate of CEPV. However, the gradients from a dense circular
LF could guide the network to estimate reliable gradients for
3D reconstruction. The performance of the networks trained
from 30 to 180, 45 to 180 outperform the networks trained
from 45 to 90 and even 90 to 90.

5.5.2 The threshold of reliable mask
Different thresholds of the reliable mask are also analyzed.
We experiment with different values of ϵ, including 0.05,
0.1, and 0.2. Table 7 demonstrates the quantitative result.
When ϵ = 0.05, the result has the minimum RMSE and the
percentage of bad pixels. Nevertheless, fewer point clouds
are reconstructed. Therefore, the noise of the depth map is
larger since limited pixels of depth are estimated. When
ϵ = 0.2 and ϵ = 0.1, the results show smaller errors with
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similar numbers of reconstructed points. Therefore, ϵ = 0.1
is chosen as the threshold in all other experiments.

TABLE 7
Quantitative results by training the proposed network using different
thresholds of reliable mask. The term ‘Num.’ refers to the average

number of reconstructed points on 50 test scenes.

ϵ Num. RMSE BP RMSE (D)
0.05 1248610.9 0.3899 0.1749 0.3333
0.1 1763588.9 0.4334 0.1893 0.3318
0.2 1768850.7 0.4782 0.2088 0.3425

6 CONCLUSION

We propose a 3D reconstruction framework by learning the
reliable gradients from the undersampled CEPV-trajectory.
The 3D reconstruction accuracy deteriorates severely when
the CEPV-trajectory turns into discrete segments. Our key
idea is that coherence is still embedded, and depth can
be estimated from reliable segments in a denser LF with
less noise and ambiguity. By formulating both the CEPV-
trajectory and its local gradients as 3D predictable series,
we design a mask-guided CNN+LSTM network, which is
capable of learning the mappings from the undersampled
CEPV-trajectory to gradients of denser LF. A reliable mask
loss is further integrated to alleviate the impact of both
occlusion and undersampling. The ablation study shows
that both the prediction scheme and the reliable mask loss
promote the performance of the 3D reconstruction. Our
results outperform existing state-of-the-art 3D reconstruc-
tion methods in undersampled circular LF on four existing
available datasets.

However, our method still requires a circular capturing
with little distortion, either by a turntable stage or a boom
rotating around the object. The rotation shaft and the optical
axis should be orthogonal and intersect. Also, the boom
should move in a relatively standard circle. Any deterio-
ration will distort our reconstruction to a certain.

In the future, we will develop our research to more
flexible scenes, such as more sparse LFs or a near circular
case. With fewer views needed, it is possible to build a
circular LF for dynamic scene capturing. We will study the
deformation of the dynamic coherent structure for robust
3D estimation. The properties analyzed with the findings in
this paper may provide new insights for Multi-view Stereo,
novel view synthesis, and other related areas.
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Fig. 14. 3D reconstruction results for real-scene circular LFs.
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