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Abstract
Segmenting human actions in long untrimmed videos is challenging due to the complicated
temporal correlations between actions and over-segmentation errors. Although Transformer
architectures have advanced correlations exploration for action recognition, they are not
designed for action segmentation, which would face heavy computational cost and temporal
redundancy. In this paper, we propose aMulti-StageDilated TransformerNetwork (MSDTN)
to deal with these challenges. Specifically, we construct Transformer between frames of dif-
ferent time spans to capture short- and long-term relationships in videos. Furthermore, to
alleviate over-segmentation errors in action segmentation, we propose to generate more sta-
ble and distinguishable features via temporal context aggregation at local scales. Especially,
our method, termed as Feature Aggregation Module (FAM), is a general module, and can be
integrated into existing architectures seamlesslywith negligible overheads for action segmen-
tation. We evaluate our proposed MSDTN and FAM on three challenging datasets (GTEA,
50Salads and Breakfast). Experimental results validate the effectiveness of our method on
all three datasets.

Keywords Temporal action segmentation · Dilated Transformer Network ·
Over-segmentation · Feature Aggregation Module

1 Introduction

Video understanding plays an important role in various applications ranging from surveil-
lance to robotics. Regarding this, one task is to classify actions from well-trimmed videos,
which has made a great process recently [1–6]. On the other hand, action segmentation aims
at simultaneously segmenting untrimmed videos and predicting the action label for each
frame, which has attracted great attention in video surveillance, summarization, and retrieval

B Qing Wang
qwang@nwpu.edu.cn

Zexing Du
duzexing@mail.nwpu.edu.cn

1 School of Computer Science, Northwestern Polytechnical University, No. 127, You Yi Xi Road, Xi’an
710072, Shaanxi, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-022-11133-9&domain=pdf


Z. Du, Q. Wang

Fig. 1 The over-segmentation errors. Different colors represent different segmented actions. We highlight the
over-segmentation errors by solid rectangles. (Color figure online)

[7–10]. Extant researches on action segmentation mainly contain two phases: extracting
spatio-temporal features and establishing correlations between these extracted features and
classifying them. The first one usually utilizes action recognition networks and has been well
explored [1, 2, 4, 6, 11, 12]. For temporal relationship exploration, most approaches [13–24]
adapt recurrent, convolutional or graph neural networks (RNN, CNN, GNN) to cope with this
problem. Although these methods have achieved good performance, there are several critical
challenges in correlations exploration: (1) for RNN, video frames are processed sequentially.
(2) For CNN, relationships between frames are content-agnostic. (3) For GNN, graphs are
fixed or noisy.

Self-attention-based architectures, in particular Transformers [25], have become themodel
of choice in natural language processing (NLP), which seems to be an appropriate solution
for these challenges. Recently, some works [2, 26] adopted Transformer architectures for
video classification. However, they are designed for trimmed videos which only contain
several sampled frames. In addition, unlike highly semantic and information-dense languages,
videos, on the contrary, are natural signals with heavy spatial and temporal redundancy.
Applying Transformers directly for long-term untrimmed videos, which usually contain tens
of thousands frames, would face challenges of heavy computation, making it hard to build
relationships between frames. Recently, ASFormer [27] utilize a pre-defined hierarchical
representation pattern for long-term video sequences. However, it is more like incorporating
additional attention models into a convolution-based architecture (i.e., MSTCN [20]), which
does not break through the limitations of convolution. And the pre-defined pattern restricts
its generalization ability to different actions.

Therefore, in this paper, instead of constructing self-attention based on global Trans-
formers without any modification, we propose a Dilated Transformer Network (DTN) to
exploit temporal relationships in videos. In detail, we apply multi-layer dilated Transformers
between frames of different time spans to efficiently and effectively explore the local and
global temporal dependencies. Unlike RNN, CNN and GNN, the proposed DTN can better
handle aforementioned challenges: (1) parallelly processing all frames, instead of sequen-
tially; (2) judiciously dealing with every frame, rather than content-agnostic; (3) building
the relationship flexibly. And DTN can also resolve the computational challenges and infor-
mation redundancy faced by global Transformers. Additionally, inspired by [20], we further
refine the predictions in a multi-stage way, which we call Multi-Stage DTN (MSDTN).

Another major problem for action segmentation lies in how to alleviate over-segmentation
errors. This problem turns out to be very challenging for heretofore state-of-the-art action
segmentation models. Generally, as illustrated in Fig. 1 , the over-segmentation errors are
mainly caused by: hard-to-recognize frames within actions, and ambiguous boundaries. To
address these challenges, the MSTCN [20] is proposed to capture the correlations between
frames and refine the detection results stage-by-stage. The loss introduced in [20] penalizes
over-segmentation errors by forcing the consecutive frames to have the same label. Recently,
there are also some attempts trying to cope with this problem by detecting action bound-
aries [22, 28]. Although excellent performance has been achieved by these methods, there
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seems to be a tendency in current research to overly focus on pursuing state-of-the-art per-
formance by stacking complicated networks but overlooking the inherent factors that cause
over-segmentation.

As analyzed above, previous approaches address the over-segmentation issue based on
complicated refining strategies. Instead, in this paper, we depart from classical detect-and-
refine strategies by proposing a Feature Aggregation Module (FAM) to aggregate features.
In contrast to refining-based approaches, which constrain the mapping between features and
labels by deeper networks, we propose to generate smoother features via temporal context
aggregation at local scales. Especially, our method is a general module, and can be integrated
into existing architectures seamlessly with negligible overheads for action segmentation. We
hope the systematic analysis and experiments could provide insights for the researchers into
the intrinsic reasons for over-segmentation errors in action segmentation.

The contributions of this paper are summarized as follows:

1. The MSDTN is proposed for action segmentation to efficiently model the temporal
relationships in various timescales.

2. Instead of refining predictions at the later layer of networks, we propose the FAM to
generate smoother features via temporal context aggregation at local scales. This allows
recovery from disturbances of features unaware temporal context and differentiates the
true action boundaries.

3. Our method achieves comparable performance compared to state-of-the-art methods on
the task of temporal action segmentation on three challenging datasets, namely, 50Salads
[29], Breakfast [17], and Georgia Tech Egocentric Activities (GTEA) [30] datasets.

2 RelatedWork

2.1 Action Segmentation

Action segmentation has received a lot of attention from computer vision community. In
earlier approaches, different scale sliding windows were applied with non-maximum sup-
pression to localize action segments and assign labels to video frames [13–15]. Fathi et al. [31]
modeled activities based on the change of objects and materials in the environment. Cheng et
al. [32] studied the temporal correlations by employing a Bayesian non-parametric model to
jointly classify and segment video sequence. Some methods applied a coarse temporal mod-
eling on top of frame-level classifiers [16–19, 33–38]. Singh et al. [19] used a two-stream
network and bi-directional LSTM to capture the dependencies of different chunks. However,
such approaches are computationally expensive and cannot be applied to long videos.

Inspired by the success of temporal convolution in speech synthesis [39], researchers
have tried to use similar ideas for action segmentation. Lea et al. [40] proposed the TCN
for action segmentation and detection. Their approach utilized two encoder-decoder and
dilated architectures. Lei et al. [41] used the deformable convolution on the top of TCN
and added a residual stream to the encoder-decoder model. Farha et al. [20] and Li et al.
[21] further enhanced the dilated TCN in a multi-stage manner, to better catch the long-
range temporal dependencies in videos. Wang et al. [22] introduced the BCN to cope with
the boundary ambiguity and over-segmentation issues in action segmentation. Gao et al.
[42] designed a global-to-local search scheme to find better receptive field combinations.
Ishikawa et al. [43] used the ASRF to classify video frames and regress action boundary
probabilities.Ahn et al. [44] refined temporal action segmentation results fromvariousmodels
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by understanding the overall context of a given video in a hierarchical way. Although these
approaches have achieved great success in action segmentation, they face challenges of
content-agnostic relationships, which ignore the difference between frames.

Our work is also related to previous efforts such as GTRM [23] and DTGRM [24] that
explore relationships using graph convolutions. These methods adopt a procedure: applying
a GNN to capture interactions, which is analogous to our Transformer. In detail, Huang
et al. [23] built the GNN based on action segments to learn the boundary regression and
classification tasks. However, the pre-computed segments are mostly inaccurate and the
constructed graphs are noisy.Wang et al. [24] captured temporal relationships via constructing
similarity and learned graphs. Nevertheless, wrong predictionsmake theweights of similarity
graph inaccurate and the learned convolutions are fixed during inference, which is not flexible
enough to model the complicated correlations.

2.2 Self-Attention Transformers

Self-attention-based architecture, in particular Transformers [25] has revolutionized NLP.
Recently, with the development of Transformers in computer vision [45, 46], it has made a
great process in video understanding [2, 26]. However, these methods are designed for action
recognition and only sample several frames from trimmed videos. For action segmentation,
which needs to predict action labels for every frame, directly applying these methods would
result in high computational costs. There are also some attempts [47–49] trying to handle
long sequences and relationship patterns in the sequences with efficiency considered. Never-
theless, these approaches are designed for highly semantic and information-dense languages.
Videos, on the contrary, are signals with heavy spatial and temporal redundancy, and apply-
ing Transformers for action segmentation in a frame-wise manner is information redundant.
More recently, Yi et al. [27] proposed ASFormer for action segmentation, which applied a
per-defined hierarchical representation pattern to deal with long video sequences. Neverthe-
less, it is more like incorporating additional attention models into MSTCN [20], which does
not break through the limitations of convolution. As a result, to correctly grasp the temporal
relationships, we propose the MSDTN network to model the temporal dependencies.

3 Multi-stage Dilated Transformer Network

We introduce the multi-stage DTN for temporal action segmentation. Given the frames of
a video x1:T = (x1, . . . , xT ), the goal is to infer the class label for each frame c1:T =
(c1, . . . , cT ), where T is the video length. In the rest of this section, we will first give an
overview of the proposed architecture. Then details of MSDTN will be discussed. At last,
the loss function of the network will be explained.

3.1 Overall Architecture

An overview of the proposed architecture is presented in Fig. 2. A linear embedding layer
is applied on the input features to project it to an arbitrary dimension (denote as C), which
is the input to our FAM. FAM would generate stable features for MSDTN, and more details
of FAM will be introduced in Sect. 4. Inspired by the dilated convolution operation in CNN,
in this paper, we propose a Dilated Transformer Block (DTB) to replace the global attention
operation. Dilated operation can efficiently increase the receptive field without expensive
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Fig. 2 The pipeline of our proposedMSDTN and FAM. In DTN, we stack L DTBs with dilated rate doubled at
each level. The outputs of the L-th level are used to calculate the action segmentation loss. Then the predicted
results are refined in a multi-stage way. FAM represents the proposed Feature Aggregation Module and more
details are provided in Sect. 4

burden of computation. To explore short- and long-term relationships between actions, we
stack L DTBs with dilation rate doubled at each layer. All these layers have the same number
of feature dimension. At the L-th layer, the outputs are used to calculate losses. In addition,
thanks to the success of multi-stage operation in action segmentation, we also build the DTN
S times to iteratively correct the prediction results.

3.2 Dilated Transformer Network

3.2.1 Global Transformers

Global Transformers can be denoted as [25]

Attention(Q, K , V ) = Softmax

(
QK�
√
C

)
V , (1)

where query, key and value tensors (Q, K , V ) ∈ R
T×C are generated by inputs. Specifically,

the output at time t is

Attention(qt , K , V ) =
T∑
i=1

1

Z
exp

(
qt k�

i√
C

)
vi , (2)

where T is the length of sequence. Z is the normalization factor, representing the summation
over the exponentials of the different products between the query and the key embeddings,
and qt is the query at time t . Global Transformers build the attention based on the entire
sequence, which is inefficient and computationally redundant, especially when the sequence
is long. Therefore, we propose the DTB to tackle this problem.

3.2.2 Dilated Transformer Block

Wepresent theDTB to explore the temporal relationships of different time spans. Specifically,
for the frame at time t , the query, key and value tensors are obtained by
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Q′
t = Wq · (ht−nσ , · · · , ht , · · · , ht+nσ ),

K ′
t = Wk · (ht−nσ , · · · , ht , · · · , ht+nσ ),

V ′
t = Wv · (ht−nσ , · · · , ht , · · · , ht+nσ ),

(3)

where (Wq ,Wk,Wv) ∈ R
(2n+1)×(2n+1) are the learnable weights for three different linear

projections, (Q′
t , K

′
t , V

′
t ) ∈R

(2n+1)×C , σ is the dilated rate, ht is the feature at time t . The
dilated kernel size is (2n + 1), which means only (2n + 1) timestamps are considered when
building the attention. Then the operation of the DTB at time t is

DTBt =
t+nσ∑

i=t−nσ

1

Z ′ exp
(
q ′
t k

′�
i√
C

)
v′
i . (4)

We can see that the DTB has larger receptive field without increasing the computation. Then,
InstanceNorm and ReLU activation are applied after each DTB and we further use residual
connections to facilitate gradients flow.We stack L DTBs to exploit the temporal relationships
of different time spans with the dilation rate doubled at each layer, i.e., {1, 2, 4, 8, . . .}. In
addition, we also follow [27] to apply a dilated convolution layer as the feed-forward layer
before the self-attention operation. The output of the l-th layer is presented as h(l)

1:T , which is
also the input of (l+1)-th layer. Therefore, the set of operations at each layer can be formally
described as

out = FeedForward(h(l)),

h(l+1) = InstanceNorm(DTB(out)) + out.
(5)

It is noted that we omit the subscript (1 : T ) for simplicity. h(0) is the input tensor at the first
layer. After stacking DTB for L times, our DTN can efficiently capture short- and long-term
temporal relationships in videos.

At L-th level, to get the action class likelihoods, we construct a convolutional layer
followed by a softmax activation over h(L), i.e.,

y = softmax(Wh(L) + b), (6)

where W ∈ R
C×K and b ∈ R

K are learned weights and bias, K is the number of classes.

3.3 Multi-stage Architecture

Furthermore, stacking several predictors sequentially has shown significant boosts in action
segmentation. In this paper, we stack DTN for S times to improve the output results. The
structure of MSDTN is illustrated in Fig. 3. The frame-wise probabilities of s stage are the
input of s+1 stage. At the first stage, the query, key and value vector tensors are calculated by
Eq. (3). After the first stage, the value V ′ is computed by the output of previous stage, i.e., the
value vector at the stage s is based on the output of stage s − 1. Under this circumstance, the
feature V ′ is completely transformed from the output of previous stage, andwill not disturbed
with the influence of previous layers [27]. Such design results in more stable predictions,
because the V ′ would not be disturbed by the varied receptive field of DTB. Prediction results
are iteratively refined by MSDTN.
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Fig. 3 The structure of MSDTN. The predicted results are refined by the proposed DTN in a multi-stage way.
After the first stage, the value vector at stage s is calculated based on the output of stage s − 1. We only show
two stages for simplicity

3.4 Computational Complexity

Supposing the kernel size is (2n + 1), at each layer, the computational complexity of global
Transformers and DTB on a video of T frames is

�(global) = 3TC2 + 2T 2C,

�(DTB) = 3TC2 + 2T (2n + 1)2C,
(7)

where the global Transformers are quadratic to sequence length T , whereas DTB is linear to
T . Note that T � (2n + 1)2 and we omit SoftMax computation in determining complexity.
Therefore, global self-attention computation is generally unaffordable for large T , while our
DTB is much more affordable. It is worth noting that the convolution computation is also
linear to T , which is the same as our DTB.

3.5 Loss Function

We train ourMSDTN in an end-to-end manner. The loss function in training is a combination
of multiple parts, denoted as

Ls = Lseg + λLt−mse,

Lseg = 1

T

T∑
t=1

− log(yt,c),
(8)

where yt,c is the predicted probability for the ground truth label ct , Lseg is the action seg-
mentation loss, Lt−mse is the truncated mean squared error, which is proposed in [20]. λ is
the hyper-parameter to determine the contributions of different losses. Following [20], we
set λ = 0.15. Moreover, since our DTN has S stages, the total loss Ltotal of MSDTN is

Ltotal =
S∑

s=1

Ls . (9)
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4 Feature AggregationModule

Besides establishing complicated temporal correlations between actions, another major chal-
lenge for action segmentation lies in the over-segmentation errors. To alleviate this problem,
an examination of the factors that cause over-segmentation errors is described in this section.
Figuring out the inherent reasons on the feature level plays an important role in guiding the
design of our approach. Then, we would show the details of our proposed FAM.

4.1 Challenges of Over-Segmentation

There usually exists a distinct difference between a transition event from action A to action B
occurring at action boundaries, along with the change of frame-wise action label. However,
because of the local consecutiveness of videos, the features would not always show signif-
icant changes immediately near boundaries. Therefore, sudden labels changes with gradual
transitions of features makes the network hard to correctly classify the frames near bound-
aries. Fluctuating predictions will be continually generated when convolutions slide over
ambiguous boundaries.

Another reason for over-segmentation arises from the hard-to-recognize frames occurring
within actions, which lead to inconsistency between features and action labels. For example,
networks may be confounded by many reasons such as changing viewpoint, illumination and
action pause.

4.2 FAM

To deal with aforementioned challenges, we propose the FAM to dilute the abnormality of
these frames. Formally, given an input video x1:T = (x1, . . . , xT ), FAM can be formulated
as

x̂t = 1

2θ + 1

t+θ∑
i=t−θ

xi , (10)

where (2θ + 1) is the size of the local window. The networks in original approaches [20]
are convolved with individual frames, i.e., {xt−1, xt , xt+1}. Nevertheless, in our method, the
weights are convolved by groups of frames. Then, the weights would be trained using rich
context features instead of individual ones, which would mitigate the issue of ambiguous
boundaries. In addition, We can obtain context-aware and consistent features by FAM, dilut-
ing the effect of hard-to-recognize frames. FAM is an extremely light-weight plug-and-play
block, and can be directly applied into action segmentation networks.

5 Datasets and EvaluationMetrics

5.1 Datasets

To evaluate the performance of the proposed method, we conduct experiments on three
challenging datasets, including 50Salads [29], Georgia Tech Egocentric Activities (GTEA)
[30] and the Breakfast dataset [17]. Some sample images are shown in Fig. 4. Details of these
three datasets can be seen in Table 1. We can see that Breakfast is the dataset that contains
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Fig. 4 Sample image categories from the 50Salads, GTEA, and Breakfast datasets

Table 1 Details of three dataset

#Vid #Cls #Ins #Frame Cross-validation

50Salads [29] 50 17 20 11,552 5

GTEA [30] 28 11 20 1115 4

Breakfast [17] 1712 48 6 2097 4

#Vid and #Cls are the total number of videos and classes respectively. #Ins is the average instances of videos.
#Frame is the average frames of videos

the most videos. Therefore, we perform our ablations mainly on Breakfast if not otherwise
stated. For evaluation, we perform fivefold cross-validation for 50Salads and fourfold cross-
validation for GTEA and Breakfast datasets. The features we used are extracted by I3D [1]
as previous methods.

5.2 EvaluationMetrics

To report the performance of our method, we employ the same evaluation metrics as [20–22,
24, 50], which include frame-wise accuracy (Acc), segmental edit score (Edit) and segmental
F1 score at overlapping thresholds 10%, 25% and 50%. Frame-wise accuracy is the most
widely used metric for action segmentation, which reports the average accuracy of every
frame. However, it has little effect on the over-segmentation errors. Therefore, edit and F1
scores are also used as measures of the prediction quality.
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Table 2 The F1@10 score and frame-wise accuracy comparison betweenMSTCN,ASFormer and ourmethod

Method F1@10 Acc Params (M) FLOPs (G) Run-time (h)

MSTCN [20] 52.6 66.3 0.799 1.671 2.7

ASFormer [27] 76.0 73.5 1.134 2.410 57.3

MSDTN 78.2 74.4 1.048 2.198 3.3

We also show the number of parameters, FLOPs and run-time. Experiments are performed onBreakfast dataset.
The run-time is measured on a single RTX 2080 Ti GPU with batch size = 1 in PyTorch evaluation mode.
The FLOPs is for one sample rate with frames = 2097, which is the average number of frames for Breakfast
dataset. The run-time is the time of training for 50 epochs on Breakfast of split 1

6 Experiments

6.1 Study onMSDTN

In this section, we validate the ability of MSDTN by comparing it to MSTCN [20] and
ASFormer [27], where the former is the most widely used convolution-based architecture,
and the latter is basedon theTransformer. Experimental results are shown inTable 2. It is easily
observed that MSDTN achieves the best performance compared to MSTCN and ASFormer.
Especially, MSDTN improves the MSTCN from 52.6 to 78.2% on F1@10 score, and also
achieves 8.1% improvements on frame-wise accuracy. This is because capturing both local
and global temporal features makes it easier to recognize simple-to-hard frames of the action
segments. Importantly,MSDTNgets these improvementwith affordable overheads, including
model parameters, FLOPs and run-time. Compared to ASFormer, MSDTN achieves better
performance regardless of evaluation metrics (e.g., 2.2% on F1@10 and 0.9% on frame-wise
accuracy). Moreover, MSDTN greatly reduces the training and inference time compared to
ASFormer. We conjecture it is because ASFormer pays too much time on the pre-defined
representation pattern, which is replaced by the efficient dilated operation in MSDTN.

6.2 Study on FAM

In this section, we compare the performance of several networks (i.e., MSTCN [20],
MSTCN++ [21], DTGRM [24] and our MSDTN) with and without FAM applied in Table 3
. Thanks to the model-agnostic of our proposed method, the training recipes, i.e., optimizer,
learning rate, batch size, feature dimension, the number of stages and layers, and any other
hyper-parameters all keep the same as its duplicates for a fair comparison. Experiments are
performed on Breakfast dataset.

From the experimental results, we can see these methods yield significant improvements
over their baselines. Especially, FAM achieves 6.9% gains on edit and 16.7% boosts on
F1@10 when employed on MSTCN. DTGRM gets a higher edit score by 2.9%. Moreover,
MSTCN++ achieves 6.0% improvements the F1@10 score. All these gains on F1 and edit
demonstrate that over-segmentation errors are further alleviated when applied with FAM. In
addition, superior results on frame-wise accuracy indicate that our method can model the
video correlations more comprehensively and correctly. These results verify that our FAM
does work when cooperating with refining-based approaches.
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Table 3 Cooperating with
networks on Breakfast dataset

Method F1@{10,25,50} Edit Acc

MSTCN [20] 52.6 48.1 37.9 61.7 66.3

FAM-MSTCN 69.3 63.3 50.3 68.6 69.0

MSTCN++ [21] 64.1 58.6 45.9 65.6 67.6

FAM-MSTCN++ 70.1 63.8 50.5 69.3 68.9

DTGRM [24] 68.7 61.9 46.6 68.9 68.3

FAM-DTGRM 72.8 65.7 50.3 71.8 69.9

MSDTN 78.2 72.6 59.9 76.8 74.4

FAM-MSDTN 78.5 72.9 60.2 77.5 74.8

FAM- means applying FAM on the original networks
Bold values indicate the best performance

Table 4 Ablation studies of
MSDTN, including the number of
stages (S), the number of layers
(L), and the kernel size (2n + 1)

F1@{10,25,50} Edit Acc

Effect of S 2 70.4 65.1 52.1 70.0 73.8

3 77.6 72.2 58.8 76.3 74.5

4 78.2 72.6 59.9 76.8 74.4

5 78.8 73.2 59.5 77.6 73.8

Effect of L 7 77.8 72.6 59.0 76.0 74.0

8 77.9 72.8 59.5 76.4 74.0

9 78.0 72.5 59.8 76.7 74.2

10 78.2 72.6 59.9 76.8 74.4

11 78.3 73.0 59.8 77.0 74.1

Effect of 2n + 1 3 (MSTCN) 52.6 48.1 37.9 61.7 66.3

3 77.2 71.4 58.2 76.3 73.0

5 78.4 72.6 59.2 76.9 73.9

7 78.4 72.6 58.8 77.1 74.2

9 78.2 72.6 59.9 76.8 74.4

11 78.0 72.1 58.9 77.0 74.1

All experiments are conducted on Breakfast dataset. We can see that our
method has wide tolerance intervals for all hyper-parameters

6.3 Ablation Study

This section will demonstrate that our method has wide tolerance intervals for hyper-
parameters, including the number of stages (S), the number of layers (L), the kernel size
(2n + 1) in MSDTN, and the window size (2θ + 1) in FAM.

6.3.1 Effect of the Number of Stages

We start our ablation analysis by exploring the effect of multi-stage architecture. Table 4
(upper) shows the effect of stages S. As shown in the table, all models can achieve a compara-
ble frame-wise accuracy. However, the F1 and edit scores have some gaps between different
stages, indicating over-segmentation errors are alleviated with the increase of stages. Espe-
cially, all metrics have significant boosts when the number of stages increases to 4. However,

123



Z. Du, Q. Wang

Table 5 Metrics as functions of
window size (2θ + 1) on
Breakfast, where the model we
used is FAM-MSDTN

F1@{10,25,50} Edit Acc

Effect of 2θ + 1 1 78.2 72.6 59.9 76.8 74.4

3 78.5 72.9 59.7 77.4 74.2

5 78.5 72.9 60.2 77.5 74.8

7 78.4 72.6 59.8 76.9 74.1

2θ + 1 = 1 represents the MSDTN without FAM

adding the fifth stage only improves the F1@10, F1@25 and edit scores, and decrease hap-
pens on other metrics. This might be an over-fitting problem as a result of increasing the
number of parameters. Therefore, unless pointed out, we set the number of stages as four in
this paper.

6.3.2 Effect of the Number of Layers

In Table 4 (middle), we investigate the effect of layers L . Increasing L to 10 can greatly
reduce over-segmentation errors and improve frame-wise accuracy. This is mainly because
the increase in the receptive field makes the network can explore more global correlations.
However, the performance has no more improvement when L > 10, which is also caused by
over-fitting problem and keeps consistency with the analysis in Sect. 6.3.1. As a result, we
set the number of layers as ten.

6.3.3 Effect of the Kernel Size in MSDTN

Furthermore, we investigate the effect of kernel size (2n + 1). From the results shown in
Table 4 (lower), we can see that better performance can be obtained with the increase of
kernel size, which indicates more information is taken into consideration when constructing
temporal relationships. Especially, when compared with MSTCN, which adapts temporal
convolution with kernel size as 3, our MSDTN achieves improvements of 24.6% on F1@10
and 6.7% on frame-wise accuracy with the same kernel size, indicating our MSDTN can
improve the quality of temporal relationship exploration. However, when the kernel size
increases to 11, negligible or no increase on all three metrics suggests that the benefits of
kernel size may have plateaued. Accordingly, we set dilation kernel size as nine, which is the
sweet point in the table.

6.3.4 Effect of the Window Size in FAM

FAM aims at alleviating over-segmentation errors in action segmentation. In this section,
we will explore the effect of window size (2θ + 1) in Eq. (10). As depicted in Table 5, a
larger window size always benefits all metrics, indicating over-segmentation errors are fur-
ther alleviated when taking more frames for aggregation. A small window can not provide
enough context information to recognize hard-to-recognize frames and ambiguous bound-
aries. Moreover, we also observe that the accuracy drops a little when we stretch the window
too large. It may be because the features of short-term actions are diluted when they are
involved in a longer window. In addition, too large windows would introduce unnecessary
information and then result in unexpected interruptions in long-term actions.
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Table 6 Compared with state-of-the-art on 50Salads and GTEA datasets

50Salads GTEA
F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc

IDT-LM [33] 44.4 38.9 27.8 45.8 48.7 – – – – –

Bi-LSTM [19] 62.6 58.3 47.0 55.6 55.7 66.5 59.0 43.6 – 55.5

Dilated TCN [40] 52.2 47.6 37.4 43.1 59.3 58.8 52.2 42.2 – 58.3

ST-CNN [18] 55.9 49.6 37.1 45.9 59.4 58.7 54.4 41.9 – 60.6

ED-TCN [40] 68.0 63.9 52.6 64.7 – 72.2 69.3 56.0 – 64.0

TDRN [41] 72.9 68.5 57.2 66.0 68.1 79.2 74.4 62.7 74.1 70.1

MSTCN [20] 76.3 74.0 64.5 67.9 80.7 85.8 83.4 69.8 79.0 76.3

MSTCN++ [21] 80.7 78.5 70.1 74.3 83.7 88.8 85.7 76.0 83.5 80.1

DTGRM [24] 79.1 75.9 66.1 72.0 80.0 87.8 86.6 72.9 83.0 77.6

BCN [22] 82.3 81.3 74.0 74.3 84.4 88.5 87.1 77.3 84.4 79.8

Global2Local [42] 80.3 78.0 69.8 73.4 82.2 89.9 87.3 75.8 84.6 78.5

ASRF [28] 84.9 83.5 77.3 79.3 84.5 89.4 87.8 79.8 83.7 77.3

ASRF + HASR [51] 86.6 85.7 78.5 81.0 83.9 89.2 87.2 74.8 84.5 76.9

ASFormer [27] 85.1 83.4 76.0 79.6 85.6 90.1 88.8 79.2 84.6 79.7

ASFormer + †Br-Prompt [49] 89.2 87.8 81.3 83.8 88.1 94.1 92.0 83.0 91.6 81.2

ASFormer + ‡MCFM [38] 90.6 89.5 84.2 84.6 90.3 91.8 91.2 80.8 88.0 80.5

MSDTN 85.9 84.1 75.9 80.0 86.2 91.7 90.1 79.2 84.6 80.1

FAM-MSDTN 86.2 84.4 77.9 79.9 86.4 91.6 90.9 80.9 88.3 80.7

The ndash indicates “not reported”. †Trained with integrated text prompts for supervision. ‡Utilized additional
hand features during training and inference

Table 7 Compared with
state-of-the-art on Breakfast
dataset

F1@{10,25,50} Edit Acc

MSTCN [20] 52.6 48.1 37.9 61.7 66.3

MSTCN++ [21] 64.1 58.6 45.9 65.6 67.6

DTGRM [24] 68.7 61.9 46.6 68.9 68.3

BCN [22] 68.7 65.5 55.0 66.2 70.4

Global2Local [42] 74.9 69.0 55.2 73.3 70.7

ASRF [28] 74.3 68.9 56.1 72.4 67.6

ASRF + HASR [51] 74.7 69.5 57.0 71.9 69.4

ASFormer [27] 76.0 70.6 57.4 75.0 73.5

MSDTN 78.2 72.6 59.9 76.8 74.4

FAM-MSDTN 78.5 72.9 60.2 77.5 74.8

Bold values indicate the best performance and underlined ones are the
second best

6.4 Compared with State-of-the-Art

In the section, we compare several state-of-the-art approaches with our method on three
datasets. The results on three datasets are shown in Tables 6and 7, from which we can see
that our model could achieve comparable performance with respect to all three evaluation
metrics. Specifically, on Breakfast, which is the largest one, our method achieves 25.9%
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Table 8 Experimental results on
MPII Cooking 2 dataset

Method F1@{10,25,50} Edit Acc

MSTCN [20] 47.1 40.0 27.1 54.8 52.9

ASFormer [27] 47.3 40.2 27.4 55.2 54.0

FAM+MSDTN 49.0 42.1 28.1 57.0 56.5

Bold values indicate the best performance

increase on F1@10 and 15.8% gains on edit score compared to MSTCN. On GTEA, when
using the same input features and supervision, our method significantly outperforms other
methods by a large margin. On 50Salads, our network is superior on all metrics. TheMSDTN
structure and FAM improve the MSTCN model from 76.3 to 86.2% on F1@10 score, and
also achieve 5.7% improvements on frame-wise accuracy. Moreover, when compared to the
recently proposed ASFormer, we still get better performance on all three metrics. The results
further demonstrate that, compared with previous methods, our MSDTN and FAM have a
stronger ability for temporal relationship exploration.

Furthermore, we also conduct more experiments on MPII Cooking 2 dataset [52], which
contains more activity classes (67) and longer videos (more than 10,000 frames per video).
As no action segmentation approach is conducted on this dataset, we reproduce MSTCN
[20] and ASFormer [27] on MPII Cooking 2 dataset with publicly available source code.
All training recipes keep the same for a fair comparison. Experimental results are shown in
Table 8. It is observed that our method achieves the best performance with respect to all three
evaluation metrics.

6.5 Qualitative Results

Qualitative results on three datasets are shown in Fig. 5 , visualizing that our predictions
have high accuracy on action segmentation. Specifically, although there are some mistakes
at boundaries, the proposed model can model the correlations of actions correctly, which
is benefiting from our MSDTN. Moreover, contribute to the effectiveness of FAM, over-
segmentation errors caused by ambiguous boundaries and hard-to-recognize frames in actions
are also alleviated.As reflected in the quantitative andqualitative results, our proposedmethod
achieves outstanding performance in action segmentation.

7 Conclusion

In this paper, we propose the MSDTN to model the temporal relationships for action seg-
mentation. We extend the conventional global Transformers to DTN to excavate temporal
relationships in various timescales. Furthermore, an effective and efficient FAM is proposed
to generate more stable and distinguishable features via temporal context aggregation at local
scales. Evaluation on three datasets demonstrates our method achieves competitive perfor-
mance compared with state-of-the-art methods. In addition, we hope the insight gleaned from
our theoretical analysis and experiments could motivate future algorithm design.
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Fig. 5 Qualitative results of our method with color-coding on 50Salads, GTEA, and Breakfast datasets, where
GT represents ground truth. We annotate some key actions in long videos
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