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a b s t r a c t 

Existing light field (LF) representations, such as epipolar plane image (EPI) and sub-aperture images, do 

not consider the structural characteristics across the views, so they usually require additional disparity 

and spatial structure cues for follow-up tasks. Besides, they have difficulties dealing with occlusions or 

large disparity scenes. To this end, this paper proposes a novel Epipolar Focus Spectrum (EFS) represen- 

tation by rearranging the EPI spectrum. Different from the classical EPI representation where an EPI line 

corresponds to a specific depth, there is a one-to-one mapping from the EFS line to the view. By exploring 

the EFS sampling task, the analytical function is derived for constructing a non-aliasing EFS. To demon- 

strate its effectiveness, we develop a trainable EFS-based pipeline for light field reconstruction, where a 

dense light field can be reconstructed by compensating the missing EFS lines given a sparse light field, 

yielding promising results with cross-view consistency, especially in the presence of severe occlusion and 

large disparity. Experimental results on both synthetic and real-world datasets demonstrate the validity 

and superiority of the proposed method over SOTA methods. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Light field [1] imaging system records the 3D scene in both spa- 

ial and angular domains [2,3] , and has becoming one of the most 

otential techniques for immersive virtual reality [4,5] . However, 

ue to the spatio-angular trade-off [6] in the sampling process, it 

s expensive to acquire high angular resolution light fields (LFs), 

hich limits the application and development of light field tech- 

ologies. Light field reconstruction aims at synthesizing LFs from 

parse input views and serves as an essential tool for generating 

ense LFs. 

In decades, dense light field reconstruction has drawn a lot of 

ttention and gained great progress, however it still faces many 

hallenging issues. For depth-based and optical flow-based meth- 

ds [7–10] , the reconstruction results are prone to depth estima- 

ion and the view consistency could not be preserved well. For im- 

licit depth-based methods, i.e. , the multiplane image (MPI) repre- 

entation [11] , the additionally introduced transparency term could 

ot describe intricately occluded areas well (see Figs. 10 , and 11 ). 

Since the essence of dense light field reconstruction is to elimi- 

ate the aliasing contents in the Fourier spectrum of the angularly 

ndersampled light field [12] , several methods have been recently 

roposed to focus on recovering the high-frequency spectrum ei- 
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her by modeling the texture consistency in the spatial domain 

13] or inpainting in the transformed domain [14,15] . However, due 

o the information asymmetry [16] between the spatial and angu- 

ar dimensions, the high-frequency spectrum learned or modeled 

rom the LFs with small disparities is inapplicable to reconstruct 

he LFs with large disparities, causing artifacts near the occlusion 

oundaries. 

More recently, Li et al. [17] propose to eliminate the aliasing 

ontents in the refocused images using the 2D focal stack spec- 

rum. The depth-independent property of line distribution in the 

D focal stack spectrum provides the theory basis for performing 

 unified anti-aliasing rendering for all depth layers. However, due 

o the irreversibility of the ‘integral’ operator, this learning frame- 

ork could only provide anti-aliasing results for the focal stack and 

t still fails to recover high angular resolution LFs. 

In this paper, we extend the theory of the 2D focal stack spec- 

rum. We observed that a 2D focal stack spectrum could be directly 

btained by applying the 1D Fourier transform to a re-arranged 

PI spectrum. Since the ‘Fourier transform’ and ‘re-arrange’ oper- 

tions are both reversible, a complete loop could be established 

etween an EPI and a 2D focal stack spectrum, hence the task of 

econstructing high angular resolution LFs could be tackled as the 

pectrum completion problem. To better represent the connection 

etween the 2D focal stack spectrum and the EPI, the term ‘2D fo- 

al stack spectrum’ is renamed as ‘Epipolar Focus Spectrum’ (EFS, 

n Section 3 ) in the paper. In addition, to eliminate the aliasing 

https://doi.org/10.1016/j.patcog.2023.109551
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109551&domain=pdf
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aused by insufficient focal stack layers, we analyze the problem 

f EFS sampling and derive the analytical function involving the 

inimal focal stack layers, the scene distribution function, camera 

arameters, the number of views, and scene depth. Based on the 

epth-independent property of the EFS, it is possible to pursue a 

nified light field reconstruction to process full disparity contents 

imultaneously. We first present an end-to-end convolutional neu- 

al network (CNN) to eliminate the aliasing contents in the EFS 

ormed from an undersampled light field (in Section 4 ). Then the 

enerated non-aliasing EFS is projected to construct the EPI spec- 

rum. After applying the inverse Fourier transform (IFT) to obtain 

he dense light field, a U-Net with a perceptual loss is finally uti- 

ized to optimize the reconstructed result and eliminate the ‘trail- 

ng image’ [18] caused by the integral operation, especially in the 

arginal views. Experimental results (in Section 5 ) verify the effec- 

iveness of the proposed EFS-based dense light field reconstruction 

ethod. 

The main contributions of the work include, 

1) The theory of EFS is improved in two aspects. a) The 

omplete reversible loop between the EPI and the EFS is estab- 

ished. b) The EFS sampling is modeled using an analytical func- 

ion. As a result, the cross-view consistency is guaranteed for full 

epth/disparity light field reconstruction. 

2) An EFS-based learning framework for dense light field re- 

onstruction is proposed. Extensive experiments on both synthetic 

nd real light field datasets verify the superiority of the proposed 

ethod. 

. Related work 

.1. Light field representation 

Let L (u, v , x, y ) represent the distribution of rays in 3D space,

here (u, v ) and (x, y ) denote the intersections between the ray

ith angular/camera and spatial/image planes, respectively [2,3] . 

o better model the contents, several representations have been 

roposed in the literature. In the spatial domain, the sub-aperture 

mage and EPI are the two most commonly used representations. 

he former emphasizes the spatial information per view, while the 

atter focuses on the disparity among views, where the slope of 

he EPI line is associated with the disparity/depth. In the Fourier 

omain, by exploring the equivalence between the 3D focal stack 

nd a 4D light field, Ng [19] claim the 2D spectrum of a refocused

mage could be obtained by slicing the corresponding 4D spectrum. 

ansereau et al. [20] propose the hyper-cone and hyper-fan repre- 

entations to extend the focal range of each focal slice. Le Pendu 

t al. [21] analyse the sparsity of light field spectrum and propose 

he Fourier disparity layer (FDL) representation by assuming the 

pectrum energy concentrates on several slices. 

Since these representations are highly correlated to the scene 

epth, directly applying the features extracted from the LFs with 

mall disparity range to the LFs with large disparity range might 

ead to wrong inference. In contrast, our proposed depth-invariant 

FS representation can enable an operation or processing covering 

he whole depth range. It is necessary to apply a depth-invariant 

epresentation for light field processing within the whole depth 

ange. 

.2. Anti-aliasing of refocusing 

Insufficient angular sampling results in aliasing in the refocused 

mages. Researchers have proposed many anti-aliasing solutions in 

oth spatial and frequency domains. In the spatial domain, Levoy 

nd Hanrahan [2] prefilter the light field to reduce the aliasing. 

hang et al. [22] compensate the effect of undersampling by uti- 

izing depth information. Xiao et al. [23] first detect the aliasing 
2 
ontents by analyzing the angular aliasing model in the spatial do- 

ain. According to this model, the aliasing could be removed as 

he lower-frequency terms of the decomposition at the refocus- 

ng stage. In the frequency domain, Isaksen et al. [24] dynamically 

eparameterize the light field, allowing exact spectrum recovery of 

 single point without post-aliasing. Chai et al. [12] analyse the 

rade-off between sampling density and depth resolution. Based on 

ocal stacks and sparse collections of viewpoints, Levin and Durand 

25] employ the focal manifold in derivations of 2D deconvolution 

ernels [21] . After that, Lumsdaine et al. [26] discuss the aliasing in 

erms of the focal manifold and conclude by rendering wide depth- 

f-field images. By deriving the frequency domain of support of the 

ight field, Dansereau et al. [20] present a simple, linear single-step 

lter to achieve volumetric focus effects. 

All these methods consider the 3D focal stack as multiple in- 

ividual slices and remove slice-wise aliasing contents, thus the 

onsistency between neighboring slices is not preserved. Li et al. 

17] propose an anti-aliasing method by completing the focal stack 

pectrum, where the aliasing contents of all the slices are handled 

t the same time by treating the 3D focal stack as a whole and the

ross-view consistency could be well maintained. 

.3. Dense reconstruction 

As mentioned above, the anti-aliasing operation essentially cor- 

esponds to the super-resolution operation in the angular domain 

8] . Existing angular super-resolution methods could be mainly di- 

ided into two categories. 

The first category is based on depth estimation [7–10,27,28] . 

anner and Goldluecke [7] reconstruct novel views by combin- 

ng input views and estimated depth information. Kalantari et al. 

8] propose two convolutional neural networks to estimate depth 

nd color of each viewpoint sequentially. Srinivasan et al. [9] take 

ne 2D RGB image as input and synthesize a 4D RGBD light field. 

pecifically, their pipeline consists of one CNN that estimates scene 

eometry, and another CNN that predicts occluded rays and non- 

ambertian effects. Subsequently, Srinivasan et al. [27] propose to 

tilize the MPI representation to synthesize the viewpoint from a 

arrow baseline stereo pair. Liu et al. [10] extend the traditional 2D 

ptical flow model to 4D and realize dense light field reconstruc- 

ion by calculating 4D light field flow. DILF [28] takes an optical 

ow as input and proposes a learnable model, namely dynamic in- 

erpolation, to replace the commonly-used geometry warping op- 

ration for novel view generation. 

The second category focuses on modeling the consistency of EPI 

exture [13,16,29,30] or the sparsity of Fourier spectrum [14,15,25] . 

u et al. [13] convert the light field reconstruction task to a one- 

imensional super-resolution of the 2D EPI. Zhu et al. [30] improve 

he super-resolution performance on EPI in large disparity areas 

y introducing a long-short term memory module. Considering the 

pecial 2D mesh sampling structure of the 4D light field, Levin and 

urand [25] utilize the 3D focus stack to complement the spec- 

rum of the 4D light field. Shi et al. [14] exploit the sparsity of the

D light field in the continuous Fourier domain and perform dense 

econstruction by adopting the sparse Fourier transform. Vaghar- 

hakyan et al. [15] utilize a sparse representation of underlying 

PIs in the shearlet domain and employ an iterative regularized 

econstruction. 

Recently, neural rendering [31] has achieved great success in 3D 

ision. Mildenhall et al. [32] model the rays as an implicit neu- 

al radiance field (NeRF) with a 5D input (3D for position and 

D for view angles) and a 4D output. Attal et al. [33] improve 

eRF by replacing the 5D input with the 4D coordinates of the 

ay and achieve state-of-the-art results in forward-facing datasets. 

owever, these methods require a large number of input views for 

raining and most of them are not generalizable models, which 
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Table 1 

Related notations of the EFS representation. 

Term Definition 

L (u, v , x, y ) A 4D light field 

u, v Angular coordinates 

x, y Spatial coordinates 

E(u, x ) 2D EPI 

E d (u, x ) Sheared EPI at the specific disparity d

d range Disparity range for the shearing process 

N f The number of refocus layers 

F T ∗(·) 1D Fourier transform on the variable ∗

F T 2 D (·) 2D Fourier transform 

F ( f, x ) Focal stack integrated by E d (u, x ) | d= f 
E(ω u , ω x ) Fourier spectrum of E(u, x ) 

F( f, ω x ) Slicing and rearranging of E(ω u , ω x ) 

EF S(ω f , ω x ) EFS or 2D Fourier spectrum of F ( f, x ) 

u re f Reference view (the center view in this work) 
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eans it is essential to retrain the network (often taking several 

ours) for different scenes. 

Nevertheless, these methods either rely on accurate depth cal- 

ulations or are inappropriate for large disparity scenes since the 

equired texture lines or sparse spectrum features are not avail- 

ble. Differently, based on the depth-independent EFS representa- 

ion, our proposed method skips the challenging depth estimation 

nd optimizes the contents at various depths with the same strat- 

gy, especially in the presence of severe occlusion and large dis- 

arity (please refer to the supplementary material for theoretical 

iscussion and analysis on occlusion and large disparity). 

. The EFS representation 

In this section, we first define the EFS representation for a light 

eld based on [17] and then introduce its depth-independent char- 

cteristics. 

.1. Notations 

For better understanding the definition of EFS, we first list the 

otations used in this work in Table 1 . 

Given a 4D light field L (u, v , x, y ) , where (u, v ) and (x, y ) refer

o the angular and spatial dimensions respectively. E(u, x ) denotes 

he particular EPI where v = v ∗ and y = y ∗. E d (u, x ) is the sheared

PI using the shearing operation E d (u, x ) = E(u, x + d · (u − u re f ))

here u re f represents the reference view. F ( f, x ) denotes the 2D 

ocal stack integrated by E d (u, x ) when the sheared value d = f .

 T ∗(·) and F T 2 D (·) denote the 1D and 2D Fourier transform respec-

ively ( ∗ means a specific variable). E(ω u , ω x ) is the Fourier spec-

rum of E (u, x ) . E F S(ω f , ω x ) is the 2D focal stack spectrum or the

pipolar Focus Spectrum (EFS) of E(u, x ) . 

.2. Background 

Given a 2D EPI E(u, x ) , its EFS representation could be con-

tructed by applying the shearing, integral and 2D Fourier trans- 

orm operators to E(u, x ) successively (see the top row of Fig. 1 ),

E f (u, x ) = E(u, x + f · (u − u re f )) , (1a) 

F ( f, x ) = 

∫ 
E f (u, x ) dx, (1b) 

EF S(ω f , ω x ) = F T 2 D (F ( f, x )) . (1c) 

According to Li et al. [17] , the EFS is composed of multiple lines

assing through the origin. Each line corresponds to a specific view 
3 
n E(u, x ) . The slope of each line is determined by the view index,

he reference view index and the shearing step �α. It is worth 

oting that the slope of each view is independent from the scene 

epth. Additionally, the EFS is conjugate symmetric according to 

he property of the Fourier transform [34] . Please refer to [17] and 

ig. 2 for more details. 

.3. EFS in the Fourier domain 

The EFS could also be constructed directly in the Fourier do- 

ain (see the bottom row of Fig. 1 ), 

E(ω u , ω x ) = F T 2 D (E(u, x )) (2a) 

F( f, ω x ) = E(− fω x , ω x ) (2b) 

EF S(ω f , ω x ) = F T f (F( f, ω x )) . (2c) 

It is straightforward to prove the equivalence between the con- 

tructions in the Fourier domain ( Eq. (2) ) and in the spatial domain

 Eq. (1) ). According to the Fourier slice photography theory [19] , 

he Fourier spectrum of the line f in the focal stack F ( f, x ) is equal

o slicing the spectrum of EPI E(u, x ) with slope − f , i.e. , Eq. (2b) .

herefore, Eq. (2b) is equal to applying a 1D Fourier transform to 

he focal stack along the x -dimension. Because both x and f di- 

ensions of a focal stack are Fourier transformed in the EFS con- 

truction ( Eq. (1) ), it is necessary to apply a 1D Fourier transform

o F( f, ω x ) via Eq. (2c) . 

Noting that, the lossless EFS could only be constructed in two 

ases, i.e. , the range of the slicing operation in Eq. (2c) meets 

 f min , f max } → {−∞ , + ∞} or with an infinite aperture size [25] .

owever, since these conditions are practically impossible to 

chieve, the EFS is actually a lossy representation in practice. To 

inimize the effects of the missing spectrum in E(− fω u , ω x ) , it is

uggested to set d min and d max as the minimum and maximum dis- 

arities of the scene respectively. A detailed analysis on this issue 

s provided in Section 5.3 . 

.4. Sampling analysis of EFS 

As analysed above, the aliasing occurs on the focal stack when 

he view is undersampled in the spatial domain ( Fig. 2 (c)). The 

pectrum lines of EFS will also become discrete ( Fig. 2 (d)) in the

requency domain. We complete the EFS by the method proposed 

n Section 4.1 to remove this aliasing. In addition, the insufficient 

efocus layers also cause aliasing in EFS ( Fig. 3 ). Here we focus on

he second case caused by insufficient refocus layers and analyse 

he lower bound of focal stack layers required for non-aliased EFS 

ecovery. 

As shown in Fig. 3 , when the refocus range of the focal stack is

qual to the depth range for all the objects in the scene, aliasing 

ppears when the disparity gap �α between neighboring focal lay- 

rs increases. To eliminate aliasing, all lines formed from different 

iews in the focal stack ought to be continuous instead of being 

iscrete, i.e. , �α(u i − u re f ) ≤ 1 , ∀ i ∈ [1 , N u ] . All the inequalities for

he middle views hold if the inequalities for two marginal views 

old. In other words, the disparity gap �α should meet the fol- 

owing inequality (please refer to the supplementary material for 

ore theoretical explanation of Eq. (3) ), 

α
N u − 1 

2 

≤ 1 . (3) 

The refocus range [ d min , d max ] is set according to the depth

ange [ Z min , Z max ] , 

 max = 

kB 

Z 
, d min = 

kB 

Z 
, (4) 
min max 
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Fig. 1. Two different ways to obtain the EFS, either via the focal stack (top flow) or via the EPI spectrum (bottom flow). 

Fig. 2. Illustrations of EPI and EFS under different angular sampling rates. From TOP to BOTTOM: 200 views (original), 10 × downsampling and 15 × downsampling respec- 

tively. 
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here k is the focal length and B is the baseline. Thus, the number

f refocus layers N f in the focal stack is calculated by 

 f = 

d max − d min 

�α
= 

kB (Z max − Z min ) 

� α(Z min Z max ) 
. (5) 

Combining Eqs. (3) and (5) , we have 

 f ≥
kB (Z max − Z min )(N u − 1) 

2 Z max Z min 

. (6) 

When the depth is discontinuous, it is essential to take the 

cene distribution into consideration. The minimum number of fo- 

al layers is estimated as 

 f min = S(Z, O, T ) 
kB (N u − 1)�Z 

2(Z min + �Z) Z min 

, (7) 

here �Z = Z max − Z min , S(Z, O, T ) denotes the scene distribution

unction, determined by the depth Z, the occlusion O and the tex- 

ure T . (Please refer to the supplementary material for more de- 

ailed discussion of the distribution function S(Z, O, T ) ). 
4 
In summary, the lower bound of focal stack layers is determined 

y the relative depth variation ( Z min , Z max ), the scene distribution 

(Z, O, T ) and the light field camera parameters kB . Fig. 4 illus-

rates an example of choosing N f min , where N u = 200 , S(Z, O, T ) =
 , kB = 9 , Z min ∈ [2 , 10] (varying the minimum depth to model the

cene at different distances), �Z ∈ [1 , 100] . Particularly, the black 

urve shows the varying trend of N f min with Z min = 4 . Please refer

o Section 5.3 for more experimental analysis. 

. EFS-based dense reconstruction 

Insufficient angular sampling causes aliasing in the focal stack, 

hus reconstructing a dense light field is equivalent to restoring 

 complete EFS corresponding to the non-aliasing light field/focal 

tack. As analysed in Section 3.2 and [17] , we can complement the 

on-aliased EFS by learning to recover the spectrum lines corre- 

ponding to missing viewpoints. Therefore, the light field recon- 

truction task could be decomposed into three sub-tasks, i.e. , EFS 
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Fig. 3. Illustration of EFSs under different focal layer counts. (a) Sufficient focal layers result in a non-aliased EFS. (b) Insufficient focal layers result in an aliased EFS. 

Fig. 4. The varying trend of N f min regarding Z min and depth range. 
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econstruction, EPI spectrum reconstruction and EPI optimization 

n the spatial domain. For the EFS reconstruction task, the method 

resented in [17] is adopted. The pipeline of the proposed dense 

ight field reconstruction is shown in Fig. 5 . 

.1. EFS reconstruction 

Specifically, similar to Li et al. [17] , we first perform shearing on 

n undersampled EPI to get the focal stack via Eq. (1a) , then apply

he Fourier transform on the aliased focal stack to get the aliased 

FS via Eq. (1b) . Subsequently, the loss function loss for optimizing 

he aliased EFS is 

oss = ‖ φσ ( EF S ali ) − EF S gt ‖ 2 + λloss s , (8) 

here φ represents the CNN parameterized by σ , the scalar λ is 

et to 1.5 for balancing the contributions of the two loss terms. 

he second term loss s constrains the conjugate symmetry of the 

econstructed EFS, 

oss s = 

1 

N f W 

N f −1 ∑ 

i =0 

W −1 ∑ 

j=0 

∣∣EF S (ω i , ω j ) −EF S ∗(−ω i , −ω j ) 
∣∣, (9) 

here | ·| refers to the norm of a complex number and ∗ indicates 

he standard conjugate operation. N f is the number of refocus lay- 

rs and W is the width of the sub-aperture image. 

Two neural networks are used to extract features from the 

ower spectrum and the phase angle, respectively. Then these fea- 

ures are combined using the Euler’s formula to obtain the real and 

maginary parts, which are concatenated and passed into the CNN 

ayers for optimization. Please refer to [17] for more details. 

.2. EPI spectrum reconstruction 

The Fourier Slice Imaging Theorem [19] tells a 2D slice through 

he origin of a 4D light field spectrum corresponds to a refocused 
5 
mage at a certain depth in the frequency domain. Based on this, 

e first apply the 1D inverse Fourier transform (IFT) of EFS along 

he f -axis, 

( f, ω x ) = 

1 

N f 

N f −1 ∑ 

ω f =0 

EF S( ω f , ω x ) e 
j2 π

f ω f 
N f . (10) 

The projection relationship between F( f, ω x ) and E(ω u , ω x ) 

an be obtained via Eq. (2) . Thus the Fourier spectrum E e f s (ω u , ω x )

f the reconstructed EPI could be calculated by performing a re- 

erse projection, 

 e f s (ω u , ω x ) = F 

(
−ω u 

ω x 
, ω x 

)
. (11) 

Fig. 6 shows the diagram of this reverse projection. Due to the 

imitation of the disparity range, only the spectrum labeled as pur- 

le of Fig. 6 (b) can be reconstructed using this operation. 

.3. EPI optimization 

The next step is to apply the 2D IFT to get E e f s (u, x ) from

 e f s (ω u , ω x ) . Since the interpolation operation is used during the 

ocal stack construction, the ‘tailing’ effect appears after the inverse 

ourier slice operation, especially for the marginal views which are 

ar away from the reference view. Hence we use the U-Net 	μ

ith a perceptual loss to optimize the reconstructed EPIs E e f s , 

rg min 

μ

{∥∥E gt , 	μ(E e f s ) 
∥∥}

, (12) 

here E gt represents the ground truth for EPI. 

The loss function for optimization is defined as follow, 

 oss EPI = l oss MAE + γ1 l oss SSIM 

+ γ2 loss VGG , (13) 

here loss MAE is the Mean Absolute Error loss, loss SSIM 

is the 

tructural Similarity loss [35] , and loss VGG is the perceptual loss 

36] which is based on the VGG19 network trained on ImageNet. 

he scalars γi (i = 1 , 2) are set to 3 and 5 for balancing the effects

f different loss terms. The detailed structure of this network is 

llustrated in the supplementary material. 

The complete dense light field reconstruction algorithm is given 

n Algorithm 1 . H represents the height of the sub-aperture image. 

. Evaluations 

To evaluate the proposed method, we conduct experiments on 

oth synthetic and real light field datasets. The real light field 

atasets are captured by both the camera array and the Lytro Il- 

um camera. Four SOTA methods are compared, including Wu et al. 

13] (without depth), LLFF [37] (MPI-based), DILF [28] (with depth) 

nd NeLFRSE [33] (NeRF-based). LLFF is retrained on our dataset 

sing the authors’ released code for a fair comparison. Since Wu 

t al. [13] do not provide the training code, we use the pretrained 

odel provided by the authors. 
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Fig. 5. The pipeline of the proposed EFS-based dense light field reconstruction, including preprocessing, EFS reconstruction, shearing projection and final optimization of the 

reconstructed EPI. 

Fig. 6. The diagram of the projection from Fig. 5 (d) to (e). (a) The 1D IFT of EFS along the f -axis F( f, ω x ) ( Fig. 5 (d)). (b) The reconstructed EPI spectrum E e f s (ω u , ω x ) 

( Fig. 5 (e)). [ d min d max ] is the disparity (refocus) range of the scene. 

Algorithm 1 

Input: 

An undersampled light field with the disparity range d range . The 

number of EFS layers N f . 

Output: 

The reconstructed dense light field. 

1: for i = 1 to H do 

2: Get the EPI E(u, x ) . 

3: Perform the shearing operation on E(u, x ) within d range via 

Eqn.1a. 

4: Get the aliased EF S ali via Eqn.1b. 

5: Reconstruct the non-aliased EF S (ω f , ω x ) using the dual- 

stream U-Net φ (as shown in[17]). 

6: Perform 1D IFT on EF S in v (ω f , ω x ) via Eqn.10. 

7: Reconstruct E e f s (ω u , ω x ) via Eqn.11. 

8: Perform 2D IFT on E e f s (ω u , ω x ) to get E e f s . 

9: Optimize the reconstructed EPI with the U-Net 	 . 

10: end for 

11: Output the reconstructed dense light field. 
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To empirically validate the robustness of the proposed method, 

e perform evaluations under different downsam pling patterns. 

he quantitative evaluations are performed by measuring the av- 

rage PSNR and SSIM metrics over the synthetic views of the lu- 
6 
inance channel. We also analyse the spectrum energy losses for 

FS reconstruction and EPI reconstruction respectively. 

.1. Datasets and implementation details 

In the training process, both the synthetic and real LFs are used. 

or the synthetic data [38] , 12 LFs containing complex textured 

tructures are rendered using the automatic light field generator 

30] , of which 7 are for training and 5 for testing. Real LFs [38] are

aken from the high-resolution Lytro Illum dataset [29] , of which 

0 are for training and 6 for testing. In order to show the rela- 

ionship between viewpoints and EFS lines, we utilize the first 200 

iewpoints for experiments. Additionally, the LFs from the Disney 

39] dataset are used to verify the performance of the proposed 

ethod on unseen scenes captured by a camera array. For the 

ense LFs, the disparity between two adjacent views is less than 

ne pixel for most scenes, and reaches two pixels for few scenar- 

os. 

At present, only the disparity along one single direction is con- 

erned so that the 2D EPIs can represent the input light field. For 

ach light field in the experiment, by considering the disparity and 

he scene distribution, the EFS is constructed by performing the 

efocus operation for 200 times ( N f = 200 ) where �α = 0 . 01 . The

cene disparity range determines the refocusing operation range f . 

or the details of the parameters of all the datasets, please refer to 

he supplementary material. 
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Fig. 7. Comparison of the EPI and its spectrum at different stages. 

Fig. 8. Distributions of EPI spectrum loss on several light field datasets. 
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Table 2 

Average PSNR and SSIM of Fig. 9 . 

Refocus range d range 0 . 8 × 1 . 0 × 1 . 2 × 1 . 0 × 1 . 0 ×
# EFSs N f 200 200 200 104 296 

PSNR ↑ 35.05 37.54 37.96 32.92 37.98 

SSIM ↑ 0.865 0.952 0.959 0.823 0.961 
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.2. Spectrum domain 

EPI spectrum loss analysis . In our experiments, the dispar- 

ty range d range = [ d min , d max ] is also the refocus range of the fo-

al stack. With the infinite aperture assumption, the spectrum en- 

rgy could be regarded as zero for other focus layers beyond the 

onstructed focal stack [25] . However, since the infinite aperture 

amera is currently not available, the EFS representation for a light 

eld has a certain loss. Fig. 7 compares the spectra and EPIs recov- 

red from the EFS and after the final optimization with the ground 

ruth. Although the structural information in the EPI can be recon- 

tructed (the disparity range is [ −1 , 1 ] in the focal stack), the miss-

ng spectrum results in an uneven color distortion ( Fig. 7 (b)). The 

roposed U-Net in Section 4.2 encouragingly reduces the loss from 

 . 86% to 1 . 43% . Thus the uneven color distortion is well corrected

 Fig. 7 (c)). 

To evaluate the upper bound of the EPI spectrum loss in a dense 

ight field, we have counted the energy loss of the spectrum over 

0,0 0 0 EPIs which are reconstructed from the EFS containing all 

he scene depth ranges for several LFs and summarized the results 

n Fig. 8 (a). In these EPI spectra, the maximum loss is 9.03 % , the

inimum loss is 0.31 % , and the average loss is 1.94 % . It can be

een that the EPI spectrum loss generally has a sparse ( ≤ 5 % ) dis-

ribution. In addition, the loss distribution on the Disney LFs [39] is 

atter and more spread out than that on the synthetic [38] and 

eal LFs [29] . We attribute this to: 1) the background texture of 

he Synthetic LFs is relatively simple, while the texture of the Dis- 

ey LFs is more complex; 2) the scene depth of the synthetic data 

s primarily concentrated within a limited interval, while the depth 

istribution of the Disney LFs is more divergent. Moreover, Fig. 8 (b) 

hows the distribution of the EPI spectrum loss with the subse- 

uent U-Net optimization. It is obvious that the energy loss is fur- 

her reduced after the optimization. 

a

7

.3. Parameter analysis 

We empirically validate the influences of the refocus range and 

he EFS sampling on the reconstructed EPI by performing the fol- 

owing parameter analysis. In these experiments, we use our syn- 

hetic LFs with 15 × downsampling. 

The refocus operation range . The refocus range is set 

o 0.8 d range , d range and 1.2 d range , respectively. As mentioned in 

ection 5.2 , with 15 × downsampling of the original light field, 

 range is the scene disparity range ( [15 d min , 15 d max ] ). Fig. 9 (a)–(c)

how the qualitative comparisons with different refocus ranges on 

he tree root scene. Quantitative analysis, in terms of average PSNR 

nd SSIM, is summarized in the 3rd and 4th rows of Table 2 . As

hown in Fig. 9 (b), partial tree root has not been reconstructed. 

he scene structure can not be reconstructed completely when the 

efocus range is too narrow. 

The EFS layer number N f . The number of refocus layers N f 

s set to 104, 200 and 296, respectively. Fig. 9 (a)–(e) show the 

ualitative comparisons with different numbers of EFS layers. The 

nd, 5th, and 6th rows of Table 2 show the quantitative compar- 

son on the reconstructed LFs. It is noticed that insufficient fo- 

al layers, of which the count is smaller than the minimum focal 

ayer count N f min (see Section 3.4 ), i.e. , N f = 104 , will cause perfor-

ance degradation ( 32 . 92 / 0 . 823 v s 37 . 54 / 0 . 952 in terms of PSNR

nd SSIM respectively). In this case, aliasing appears in the focal 
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Fig. 9. Qualitative comparisons regarding the refocus operation range and the EFS layer number on a synthetic light field. The top row shows reconstructed views with differ- 

ent parameters. The remaining two rows show the reconstructed EPIs corresponding to the yellow and green lines in the reconstructed view respectively. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

Quantitative comparisons with SOTAs under different downsampling rates. 

Syn. LFs Real LFs [29] Bike Church Couch Statue 

10 × 15 × 10 × 15 × 5 × 10 × 10 × 10 ×
Wu et al. [13] PSNR ↑ 35.48 34.77 36.14 34.92 31.13 32.64 32.01 32.63 

SSIM ↑ 0.851 0.813 0.877 0.825 0.708 0.721 0.724 0.698 

LPIPS ↓ 0.060 0.093 0.050 0.078 0.110 0.080 0.113 0.098 

LLFF [37] PSNR ↑ 37.29 36.46 39.74 37.02 35.51 38.85 37.25 38.53 

SSIM ↑ 0.941 0.922 0.964 0.925 0.875 0.962 0.916 0.956 

LPIPS ↓ 0.059 0.089 0.039 0.079 0.082 0.051 0.084 0.049 

DILF [28] PSNR ↑ 34.28 33.73 34.13 33.88 33.64 31.81 32.69 32.77 

SSIM ↑ 0.810 0.754 0.845 0.799 0.743 0.719 0.752 0.641 

LPIPS ↓ 0.085 0.106 0.087 0.093 0.096 0.087 0.098 0.090 

NeLFRSE [33] PSNR ↑ 37.56 36.27 40.57 37.26 35.45 37.66 39.18 38.17 

SSIM ↑ 0.949 0.904 0.941 0.917 0.915 0.920 0.905 0.938 

LPIPS ↓ 0.058 0.091 0.062 0.073 0.081 0.071 0.097 0.065 

Ours PSNR ↑ 39.36 37.54 40.18 37.74 36.77 37.95 43.05 40.82 

SSIM ↑ 0.963 0.952 0.948 0.938 0.939 0.964 0.928 0.959 

LPIPS ↓ 0.056 0.088 0.043 0.072 0.085 0.060 0.079 0.041 
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tack, which leads to over-smooth textures in Fig. 9 (d). In addition, 

hen N f is increased from 200 to 296, only a slight improvement 

s reported ( 37 . 54 / 0 . 952 v s 37 . 98 / 0 . 961 ). Hence once the number

f EFS layers N f meets the minimum sampling rate requirement, 

ontinuously increasing EFS layers would not bring obvious im- 

rovements in the performance. 

.4. Comparisons with SOTAs 

Table 3 shows the average PSNR/SSIM/LPIPS [40] measurements 

ith different downsampling rates on both synthetic and real LFs. 

ualitative comparisons between different methods on several test 

cenes under 15 × downsampling rate are shown in Figs. 10–12 re- 

pectively. 

.4.1. Synthetic light field datasets 

We evaluate the proposed method using our synthetic light 

eld datasets under 10 × and 15 × downsampling rates. Qualitative 

esults under 15 × downsampling (maximum disparity up to 8px) 

re shown in Fig. 10 . 

As shown in Fig. 10 (b), ghosting artifacts are visible around the 

oundary region in the result by Wu et al. [13] , which are caused

y the limited receptive field of their network. Also, the Gaussian 

onvolution kernel is only effective for small disparity. The MPI- 

ased LLFF [37] tends to assign high opacity to incorrect layer for 
8 
he region with ambiguous/repetitive texture or moving content 

etween input images, which will cause floating or blurred patches 

round the boundary region (see the boundary region of the pot in 

ig. 10 (c)). DILF [28] is built upon depth estimation, so an inaccu- 

ate depth map leads to errors in the edges of the reconstructed 

iew (see the error map and the EPI of Fig. 10 (d)). The NeRF-based

eLFRSE [33] is optimized pixel by pixel, so it has obvious errors at 

he boundary regions (see the zoom-in rectangles of Fig. 10 (e)). In 

omparison, the proposed EFS-based reconstruction produces clear 

oundaries (as shown in Fig. 10 (d)). 

Fig. 13 shows the PSNR and SSIM measurements for each re- 

onstructed view on the synthetic light field under 10 × and 15 ×
ownsampling rates. Due to the shearing process used in our 

ethod ( Eq. (1a) ), the more marginal views there are, the more 

mage information will be sheared out of the image. Thus the re- 

onstruction results are not satisfactory on these marginal views. 

till, the overall performance of our method is better than the 

OTAs, especially for larger disparity scenarios. The 3rd and 4th 

olumns of Table 3 list the quantitative measurements on synthetic 

Fs under different downsampling rates, which further validates 

he superiority of the proposed method. 

.4.2. Real LFs captured with a plenoptic camera 

We also evaluate the proposed approach using the Lytro light 

eld dataset [29] , which contains massive static scenes, such as bi- 
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Fig. 10. Comparison on the synthetic light field dataset (15 × downsampling). For each result, the reconstructed view, the error map, two close-up regions and the recon- 

structed EPI are provided. 

Fig. 11. Comparison on the real light field dataset (15 × downsampling). 

Fig. 12. Comparison on the camera array light field dataset (15 × downsampling). 
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ycles, toys, and plants. These scenes are challenging in terms of 

bundant colors and complicated occlusions. 

Fig. 11 shows the reconstruction results on the basket scene un- 

er 15 × downsampling. There exist many thin structures in the 

cene, such as the basket handle. The texture on such a thin struc- 

ure changes very fast, which results in difficulties for reconstruc- 

ion. We can see that severe ghosting artifacts occur around the 

asket handle in the results by Wu et al. [13] and reconstructed 

iews are inconsistent ( Fig. 11 (b)). Similarly, a fuzzy phenomenon 

ppears in the results by LLFF [37] . DILF [28] still suffers from 

he edge reconstruction errors and inconsistent views. NeLFRSE 

33] could not provide reliable results in heavy occlusion areas 

uch as the basket in Fig. 11 (e). By reconstructing the dense light 

eld in the frequency domain, our method is less sensitive to spa- 

ial contents, and thus capable of producing high-quality and con- 

istent view reconstruction. 

Fig. 14 shows PSNR and SSIM measurements for each recon- 

tructed view of Fig. 11 under 10 × and 15 × downsampling. The 

SNR value of our method is lower than that of NeLFRSE [33] un- 

er 10 × downsampling, however, at significant disparity (under 

5 × downsampling), our method provides better reconstruction re- 

ults over 95 % views. Quantitative comparisons in terms of PSNR, 

SIM, and LPIPS are listed in the 5th and 6th columns of Table 3 . 
9 
.4.3. Real LFs captured with a camera array 

In order to verify the effectiveness of our method under wide 

aseline and large disparity conditions, we further evaluate the 

roposed approach using the Disney LFs [39] which are captured 

y a camera array. 

Fig. 12 shows the reconstruction results on the statue scene 

nder 10 × downsampling (maximum disparity up to 15px). Due 

o the limited receptive field of the network, the results by Wu 

t al. [13] show serious aliasing effects on all the foreground ob- 

ects ( Fig. 12 (b)). Due to the memory limitation, there is a trade- 

ff between the image resolution and the layers of MPIs utilized 

y LLFF [37] , which leads to a performance degradation for large 

isparity areas with a high-resolution input. Also severe artifacts 

ppears in the regions with repetitive patterns, large disparity and 

cclusions, as shown in the zoom-in rectangles in Fig. 12 (c). This 

s a common failure mode for the methods using texture matching 

ues for inferring depth. DILF [28] cannot reconstruct the view at 

n arbitrary position (only reconstruct the middle three views be- 

ween two input views), so in the case of a large parallax, there 

xists serious content inconsistency across views (see the EPI of 

ig. 12 (d)). Since NeLFRSE [33] requires extensive input views to 

earn the mapping between the input rays and the RGB values, the 

cclusion boundaries are blurred when there are insufficient input 
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Fig. 13. PSNR and SSIM of the reconstructed views of Fig. 10 . 

Fig. 14. PSNR and SSIM of the reconstructed views of Fig. 11 . 

Fig. 15. EFSs by different ref erence views under 15 × downsampling (the original light field has 200 views). From (a) to (c), the index of the reference views is 71, 101 and 

131, respectively. 
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iews. In contrast, thanks to the depth-independent characteristic, 

ur proposed method shows better performance for large dispari- 

ies. Furthermore, it is noticed that the proposed method maintains 

etter view consistency compared with other methods. Quantita- 

ive results on several scenes of the Disney LFs are shown in the 

ast four columns of Table 3 . 

.5. Multi-reference-view results 

As shown in Figs. 13 and 14 , the reconstruction performance for 

ome marginal views by our method (only one center reference) 

as been slightly below than that of the SOTAs. This is because 

he center reference view does not contain enough side-view in- 

ormation when the baseline is large. In this section, we use multi- 

eference views to build multi-EFSs to provide more information 

or marginal view reconstruction. 

Fig. 15 shows reconstructed multi-EFSs, which are built using 

he 30th view ahead of the center view ( u re f = u cen − 30 ), the cen-

er reference ( u re f = u cen ) and the 30th view behind the center

iew( u re f = u cen + 30 ). Fig. 13 (b) and 14 (b) show PSNR and SSIM

easurements for each reconstructed view of Figs. 10 and 11 . It 

an be seen that utilizing multiple EFSs significantly improves the 

verall performance of our EFS-based method, especially for the 

dge views. 
10 
.6. Full parallax results 

To verify our method’s capability to reconstruct the 4D light 

eld with both horizontal and vertical views, we provide the re- 

onstruction of the full parallax light field in this section. The se- 

uential solution for full parallax is reconstructing the views con- 

aining vertical disparities after all the views containing horizon- 

al disparities have been reconstructed, which is illustrated using 

n array of 17 × 17 full parallax reconstructed from the 9 × 9 in- 

ut views (marked in black) in Fig. 16 . As shown in Fig. 16 (b),

he views marked in green are firstly reconstructed in the hori- 

ontal parallax reconstruction step, and the views marked in blue 

re later reconstructed in the vertical parallax reconstruction step. 

e validate this solution on the Lego dataset [41] and show the 

ualitative and quantitative results in Fig. 17 . 

Due to the larger disparity ([ −9 , 7]) of the Lego dataset, there

xist apparent artifacts near boundary regions and discontinuous 

PIs in both the results by Wu et al. [13] and LLFF [37] . Addi-

ionally, LLFF [37] usually requires a large dataset for model train- 

ng, while our method is capable of learning the relation between 

iews and spectrum lines in the frequency domain from a rela- 

ively small training dataset. NeLFRSE [33] achieves good results 

enefiting from a large number of input views (81) in this set, 

owever, it requires additional time to retrain the network for dif- 
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Fig. 16. Illustration of the sequential solution for full parallax light field reconstruction. (a) 9 × 9 input views. (b) 17 × 17 output views. 

Fig. 17. Comparison on the Lego dataset (from 9 × 9 to 17 × 17 views). 

Table 4 

The average PSNR and SSIM on the Lego dataset. 

Wu et al. [13] LLFF [37] NeLFRSE [33] Ours 

PSNR ↑ 36.29 37.71 39.25 39.02 

SSIM ↑ 0.862 0.895 0.954 0.965 
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erent scenes. Moreover, its lower SSIM value tells that the pixel- 

y-pixel optimization cannot keep the image structure well. The 

xperimental results show that our proposed method can generate 

lear edges and preserve cross-view consistency. Table 4 shows the 

verage PSNR and SSIM on the Lego dataset. 

.7. Limitation 

At present, the energy loss of the spectrum still exists, which 

ay lead to uneven color distortions, as shown in the red rectangle 

f Fig. 7 . A possible solution could be to adapt the spatio-frequency 

ombined method, or adding a visual channel to compensate for 

he energy loss in the frequency domain. In addition, although the 

roposed method outperforms the SOTA methods on both view re- 

onstruction quality and cross-view consistency preservation, the 

hearing operation may cause a moderate decline in the recon- 

truction performance for the marginal views ( Section 5.4 ). This 

ould be addressed by introducing more reference views during 

he construction of the focal stack to provide more scene informa- 

ion. 
11 
. Conclusions 

In this paper, we have extended the focal stack spectrum theory 

nd presented the EFS for representing the light field reversibly, 

roviding the theoretical basis for dense light field reconstruction 

rom a sparse one using the EFS. We analyse the EFS sampling 

roblem, and derive the analytical function of the minimal focal 

tack layers according to the scene distribution function, camera 

arameters, the number of views, and scene depth. In the imple- 

entation, we first reconstruct the EFS of a dense light field from 

 sparse one using a dual-stream network. Then this dense EFS is 

rojected to the EPI, which is finally fed into a subsequent U-Net to 

liminate the uneven color distortion. Experimental results show 

hat the proposed method exhibits superior performance under 

any challenging conditions, such as large disparities and complex 

cclusions. 

The proposed method is capable of preserving the cross-view 

onsistency, however, due to the slight energy leakage in the re- 

onstructed spectrum, there exists an uneven color distortion. In 

he future, we will try to minimize the energy loss and address 

he issue in a learnable Fourier network. 
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