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Abstract—This paper explores semantic-aware representations
for scoring figure skating videos. Most existing approaches to
sports video analysis only focus on reasoning action scores
based on visual input, limiting their ability to depict high-
level semantic representations. Here, we propose a teacher-
student-based network with an attention mechanism to realize
an adaptive knowledge transfer from the semantic domain to the
visual domain, which is termed semantics-guided network (SGN).
Specifically, we use a set of learnable atomic queries in the student
branch to mimic the semantic-aware distribution in the teacher
branch, which is represented by the visual and semantic inputs. In
addition, we propose three auxiliary losses to align features in dif-
ferent domains. With aligned feature representations, the adapted
teacher is capable of transferring the semantic knowledge to the
student. To verify the effectiveness of our method, we collect
a new dataset OlympicFS for scoring figure skating. Besides
action scores, OlympicFS also provides professional comments
on actions for learning semantic representations. By evaluating
four challenging datasets, our method achieves state-of-the-art
performance.

Index Terms—Figure skating videos, sports video analysis,
multi-modality representation learning, teacher-student network,
action quality assessment.

I. INTRODUCTION

ENEFITING from the healthy and graceful characteris-
tics of figure skating, an increasing number of people
are participating in this sport. And there are a great number of
figure skating videos uploaded online with the development of
digital cameras and media-sharing platforms. Therefore, it has
become increasingly important to accurately analyze various
performance indicators in sports videos, which have a great
range of applications in automatically scoring the players,
highlighting shot generation, and video summarization [1].
Unlike action recognition focuses on classifying actions within
a few seconds [2]-[4], long-term figure skating analysis is
more challenging since they contain richer and more com-
plicated correlations [5]. Although a great progress has been
achieved in figure skating analysis with the development of
neural networks and large-scale datasets [1], [6], [7], how
visual processing depicts and interacts with semantic repre-
sentations remains unclear.
Cognitive neuroscience research has found that the human
capability of recognizing actions involves two main processes,
the rapid visual analysis of the action in posterior regions along
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Fig. 1. An overview of our method. In the semantic domain, we encode com-
ments and video features jointly to generate semantic-aware representations.
Then these semantic-aware representations are used to guide the training of
visual features. The semantic information is only used for training, and we
get the figure skating score only based on the visual input during inference.

the ventral stream and the activation of semantic knowledge
in anterior regions [8]. Visual processing leads to the auto-
matic activation of the conceptual knowledge [9], while the
semantic representations are activated along the ventral stream.
However, existing methods for sports video analysis mainly
focus on exploiting visual context, without exploring semantic
information in videos, which limits their ability to cope with
high-dimensional semantic representations. Accordingly, to
address the question of how the visual properties of actions
elicit semantic information, we collect a new multimodal
dataset and propose a semantics-guided network (SGN) to
bridge the gap between semantic and visual domains.

A professional figure skating commentator can point out
key moments in the competition, such as impressive jumps
or falls, which could be collected in international figure
skating competitions and provide rich semantic information for
visual representations. Based on this insight, we collect a new
dataset, named OlympicFS, from Olympic Winter Games in
Pyeongchang 2018 and Beijing 2022. Our OlympicFS contains
four categories of figure skating competitions, i.e., men/ladies
short program and men/ladies free skating. For annotations,
we provide scores from professional judges in competitions.
Importantly for our purposes, we also collect detailed feed-
back from sports commentators, which provide rich semantic
information for sports analysis that was overlooked in previous
works [6], [10].

To explore semantics-guided representations, we introduce
a teacher-student strategy specific to Transformers. Our model
aims at using semantic-aware representations to guide the
training of visual features in the visual domain, as illustrated in
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Fig. 1. Especially, in the semantic domain, we first aggregate
semantic descriptions and visual features by conducting cross-
attention [11] between semantic comments and videos to
generate semantic-aware representations. Then, these features
serve as the teacher to provide supervision for the visual
domain. In the student branch, we define a set of learnable
atomic queries to describe different components in videos. For
example, a figure skating action consists of several key parts,
such as spin, sequence, jump, etc. These fine-grained queries
enable the model to identify the key atomic actions in videos.
The training of these atomic queries is guided by the teacher
in the semantic domain. Besides comments in our OlympicFS,
the semantic representations in the teacher branch could also
be extracted from other modalities, such as the music in [10].

To bridge the feature space in both domains, we propose
three auxiliary losses in this work, which use the semantic-
aware distribution to guide the visual representations. Firstly,
we use a loss term to have the student network mimic the
teacher’s cross-attention distribution. In this way, the adapted
teacher is capable of transferring semantic knowledge to visual
representations. Then, we propose a contrastive loss [12] to
align features in these two different domains. Furthermore, a
score consistency constraint is defined for teacher and student
branch to align the learned feature representations. After
training, the obtained atomic queries can independently extract
semantic information from sports videos, without relying on
labeled comments. Consequently, these semantic comments
are not used during inference, which ensures the feasibility
of our method in real-world scenarios.

We evaluate our proposed method on our OlympicFS and
other two public datasets for scoring figure skating, i.e.,
FS1000 [10] and Fis-v [1]. Moreover, we also conduct exper-
iments on the MTL-AQA dataset [13], which is designed for
diving and also annotates action quality scores and descrip-
tion of the dive. As a result, our method could outperform
previous works, demonstrating its effectiveness. We hope
our exploration will provide significant insights concerning
knowledge transferring across different modalities to grasp a
full understanding of sports videos. In short, our contributions
are summarized as follows:

o We propose a teacher-student-based network SGN, which
extracts semantic-aware representations to guide the train-
ing of visual features for scoring figure skating videos.

o Three auxiliary losses are proposed to align features
in semantic and visual domains and transfer semantic
information across these two feature spaces.

o We propose a new dataset OlympicFS, which is annotated
with detailed comments for learning semantic represen-
tations in figure skating videos.

« Extensive experimental results on OlympicFS, FS1000,
Fis-v, and MTL-AQA verify the effectiveness of our
method.

II. RELATED WORK

This section reviews closely related work on sports video
analysis. Furthermore, we will discuss some literatures on
video analysis of figure skating. Finally, we discuss the rele-
vant methods based on multimodal representation learning.

A. Sports Video Analysis

Sports video analysis has recently been topical in the
research communities. This technology has important appli-
cations in professional sports [14], [15], such as football [16],
[17], basketball [18], volleyball [19], figure skating [1], [6],
[7], [10] and other fields [20]-[22]. Using deep learning tech-
nology, computer vision systems can be trained to automati-
cally identify different types of objects and actions in sports
games and provide more accurate analysis and predictions for
sports understanding.

Besides detecting and recognizing actions in sports videos,
there are also a great number of works focusing on action
quality assessment (AQA) [5], [13], [23]-[32]. Compared to
action recognition [2]-[4], [33] focuses on correctly classi-
fying the action sequences from different categories, AQA
is more challenging as it requires dealinges with the videos
from the same category with poor intra-class discriminant. The
mainstream methods treat AQA as a regression task, relying
on reliable score labels provided by expert judges. Early
works [7], [34] in this field used support vector regression
to perform regression, with input features consisting of either
hand-crafted discrete cosine transform or deep C3D [35]
features. There were also works using LSTM [1] and graph
neural networks [36] to explore spatio-temporal correlations
in videos. Parmar and Morris [13] introduced the concept of
multi-task learning to enhance the model capacity for AQA.
Tang et al. [30] presented a novel approach called uncertainty-
aware score distribution learning, which aimed to address the
inherent ambiguity in action score labels assigned by human
judges. More recently, Yu et al. [24] developed a group-
aware regression tree (CoRe) to replace the traditional score
regression. Xu et al. [5] designed a Likert scoring paradigm
to quantify the grades explicitly. Li et al. [23] proposed a
pairwise contrastive learning network to focus on the subtle
difference between videos. Bai ef al. [27] introduced a tempo-
ral parsing transformer (TPT) to decompose the holistic feature
into temporal part-level representations.

B. Figure Skating Analysis

In computer vision, the analysis of figure skating videos can
be traced back to [7], which trained a regression model from
spatio-temporal pose features to scores obtained from expert
judges and gathered Olympic videos for action assessment.
Similarly, Xu et al. [1] collected 500 figure skating videos
from ladies single program for action scoring. They also
developed an architecture, containing self-attentive LSTM and
multi-scale LSTM, to learn the local and global sequential
information in videos. Moreover, another fine-grained classifi-
cation dataset FSD-10 was introduced in [6], which consisted
of 10 different actions in men/ladies programs. For classi-
fication, they further proposed a key-frame-based temporal
segment network. Additionally, several dedicated models have
been proposed for figure skating analysis. Nakano et al. [37]
detected the highlight in figure skating programs with peo-
ple’s reactions. ACTION-Net [38] learned the video dynamic
information and static postures of the detected athletes in
specific frames to strengthen the specific postures in videos.
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Fig. 2. Some examples of our OlympicFS dataset. Each row shows a complete figure skating action and we sample some important frames. We collect
this dataset from Olympic Winter Games in Pyeongchang 2018 and Beijing 2022, containing men/ladies short program and men/ladies free skating. Besides

actions scores, we also provide professional comments for each video.

EAGLE-Eye [39] built a two-stream network to reason about
the coordination among the joints and appearance dynamics
throughout the performance. More recently, Xia et al. [10]
extended the MLP framework into a multimodal fashion
MLP-Mixer and effectively learns long-term representations
through the designed memory recurrent unit. Moreover, they
also collected an audio-visual FS1000 dataset, containing over
1000 videos for scoring figure skating videos.

In summary, the major technical differences between pre-
vious methods and ours include the following three aspects.
(1) We focus on a new problem, ie., learning semantics-
guided representations for scoring figure skating, which is not
explored in [10], [24], [27]. (2) CoRe [24] and TPT [27] rely
only on visual features and do not delve into the semantic in-
formation in videos. Instead, we aggregate semantic and visual
features jointly to generate semantic-aware representations. (3)
Although MLP-Mixer [10] learns multimodal representations
by modeling audio and visual features, one major difference is
that we only utilize semantic features to guide the training of
atomic queries. By learning semantics through atomic queries,
we solely rely on video input during the inference.

C. Multimodal Learning

There exists a rich exploration in multimodal learning,
especially in the deep learning era [40]-[43]. Not only is this
task integral to advancing machine perception of our world
where information often comes in different modalities, but
also has important implications in fundamental research such
as robotics, visual question answering, video captioning, and
retrieval. More recently, Transformers [11] are prevalent in
natural language processing and have also shown promis-
ing performance in computer vision [44]-[46]. Therefore,
more and more works adopt Transformers architectures to

predict contextualized latent representations from different
views. While these approaches rely on large-scale datasets
and employ multimodal self-supervision tasks for pretraining,
we focus on transferring semantic knowledge to the visual
domain to improve the understanding of figure skating actions.
Some methods [47], [48] focus on aggregating multimodal
information from pre-trained large-scale models. However,
in the field of action assessment, there have not yet been
related large-scale models developed. Therefore, our method
and collected dataset could serve as a solid starting point for
future research on multimodal learning in this domain.

III. OLYMPICFS DATASET

To further facilitate the study of learning semantic-aware
representations for figure skating scoring, we collected a new
dataset OlympicFS with high-quality videos. All of the videos
used in this study were captured by professional camera
devices during high-level competitions in Olympic Winter
Games. The dataset is designed to predict scores in figure
skating competitions, including rich annotations such as action
scores, program categories and professional comments, which
may further advance research in this field.

A. Data Collection

To construct the dataset, we searched and downloaded a
large quantity of figure skating videos from professional,
high-standard international skating competitions, including
the Olympic Winter Games in Pyeongchang 2018 and Bei-
jing 2022. Normally, OlympicFS consists of four categories:
men/ladies short program and men/ladies free skating. We
collected official video records of them from the Internet,
ensuring these video records are complete, distinctive and of
high-resolutions, e.g. 1280 x 720.
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Fig. 3. The pipeline of our proposed method. Firstly, we extract video features using the pre-trained video backbone. Then, the teacher branch learns
semantic-aware representations by constructing cross-attention between visual features and text queries. The student branch builds the attention mechanism
using a set of learnable atomic queries, which is guided by the teacher’s distributions. During inference, only the student branch is used with visual inputs,

ensuring the feasibility of our method in real-world scenarios.

TABLE I
DATASET COMPARISON. FS REFERS TO THE LONG-TERM FIGURE SKATING
TASK. V, T, AND A REPRESENT VISUAL, TEXT, AND AUDIO FEATURES.

Dataset \ MTL-AQA [13] Fis-v [1]  FS1000 [10] OlympicFS
Field Diving FS FS FS
Feature V+T \'% V+A V+T

The raw videos collected from competitions are typically
untrimmed and capture the entire procedure, including the
performances of all players, highlight replays, warm-up parts,
and waiting-for-score at the Kiss&Cry. However, these redun-
dant parts may not be necessarily useful in judging the figure
skating performance. And we aim to predict the figure skating
scores from the competition performance of each player, in-
stead of these “backgrounds”. Therefore, we manually process
all videos, reserving pure competition performance clips of
players from the exact beginning to the ending moment of
actions. Some clips of OlympicFS are shown in Fig. 2.

B. Annotations

After collecting videos, we carefully annotated each video
with two scores, namely, Technical Element Score (TES) and
Program Component Score (PCS). These scores are given
by the mark scheme of the figure skating competition. The
TES is calculated based on the difficulty and execution of the
technical elements performed by the skater, such as jumps,
spins, and step sequences. The PCS evaluates the overall
performance of the skater in terms of their skating skills,
performance/execution, choreography, interpretation, and mu-
sicality. Both the TES and PCS are given by different referees
who are experts on figure skating competition.

In addition to scores, we further collected professional
commentary during figure skating competitions as shown in

TABLE I. Similarly, we only collected commentary during the
skating process and did not use any post-scoring comments.
To our best knowledge, our dataset is the first one to utilize the
commentary feature in this area. Both score and commentary
annotation stages adopt a cross-validating method. Specifi-
cally, we employ two workers who have prior knowledge in the
figure skating domain and divide data into two parts without
overlap. The annotation results of one worker are checked
and adjusted by another, which ensures annotation results are
double-checked. Under this pipeline, the total time of the
whole annotation process is about 100 hours. The dataset will
be released for further research purposes in this community.

IV. METHOD

Our proposed method is tailored for figure skating scoring
involving multiple individuals. In Section IV-A, we would first
show the details of feature extraction. Next, Section IV-B
will shed light on the details of extracting semantic-aware
representations. Then, we would elaborate on the structure
of SGN in Section IV-C, which learns semantic information
from the teacher branch. Moreover, the scoring loss will be
introduced in Section IV-D.

A. Feature Extraction

The pipeline of our method is illustrated in Fig. 3. Given
a long figure skating video, which usually has thousands of
frames, we first follow [4] to divide the input video into
T, segments. Each segment contains multiple frames and
we input these video segments into well-designed projection
models [46] to extract visual features. Then, an MLP is applied
for reducing the dimension of backbone features. Obtained
feature sequences are denoted as X, € RTv*D wwhere D is
the feature dimension. For the text input, we extract features
X; € RT**P by a token embedder followed by a pre-trained
Transformer [49].

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on November 28,2023 at 13:48:37 UTC from IEEE Xplore. Restrictions apply.
© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2023.3328180

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Semantic-Aware Features

T, x D
Feed-forward

0
Softmax % T, XD

|T, x D

~
Cross-Attention

Ty X T,

Ty X l)l T, XD

Query Key Value

Self-Attention Self-Attention
[ [

Text Features X,
T, x D

Visual Features X,
T, %D

Fig. 4. The structure of the teacher branch, which learns semantic-aware
representations by cross-attention. The shapes of important tensors are shown
in gray. ® denotes matrix multiplication. Query, Key and Value are three
different linear projections.

B. Learning Semantic-Aware Representations

Since the features are independently extracted from the
video sequence, each clip only contains information of current
segment and lacks global context information. Therefore,
we first use the self-attention encoder to enrich segment-
wise representations. The self-attention mechanism involves
the weighted aggregation of segment features to obtain the
context information of each segment. The weights used in this
process are determined by the correlations between the current
segment and others,

W(]SXU (Wk‘SX'U ) T
vD

where W,s, Wy, and W, are trainable matrices. Then, the
Hj is passed into a feed-forward network (FFN) for further
fusion, which are represented as Xo. Fig. 4 also shows this
process, where the FFN is omitted for simplicity.

In the teacher branch, we aim to extract semantic-aware
representations from provided commentaries. For this purpose,
we construct cross-attention between visual and text features
to learn semantic correlations of them. Inspired by DETR [50],
the Transformer decoder used in our model includes three
parts, i.e., self-attention, cross-attention and FFN, as illustrated
in Fig. 4. Especially, the self-attention mechanism is applied
for mining the relationship among text features. Similarly, we
denote the updated text representations after the self-attention
as Xt.

The context-aware representations are learned by cross-
attention between the extracted X, and X,. Firstly, the qguery
is generated by X,, while the key and value are transformed
from X,, via three different linear layers:

Hy = Softmaz < > Wys Xy + Xy, (1)

Qt = qut» K, = kava V, = vava 2)

where W, W}, and W, are the trainable weights. The semantic
correlations between text and visual features are measured by

the dot-product similarity between the corresponding query-
key pair, which is formulated as

3)

T
AT = Softmax <QtK” ) ,

VD

where /D serves as a scaling factor. AT € R7**T> shows how
much the text features are related to the visual representations.
Finally, the output of cross-attention is obtained by aggregating
information between AT and V,, followed by FFN,

HT = FFN(ATV,), “

where HT € RT¢+*P s the output of the teacher branch.

C. Semantics-Guided Network

Unlike previous works [10], [13] that processed visual and
semantic information together for scoring actions, we use
semantic-aware representations to guide the learning of visual
features. In detail, we first define a set of learnable atomic
queries X, € REXD in the student branch, where K is the
number of queries. These queries are used to represent the key
semantic information for scoring, such as the glorious jump
or terrible fall in figure skating. Then, the implementation
details are defined analogously with the teacher branch while
we replace the text features with these learnable queries, which
also include self-attention, cross-attention and FFN. We denote
the updated queries after the self-attention as Xq, and the
following operations are

Q= Wik, K, = WK, V= WK )
1T

A® = Softmax j/ﬁv , (6)

HS = FFN(ASV), @)

where A € RE*Tv and HY € REXD are the attention
map and output of the student branch. After that, we use the
semantic knowledge in the teacher branch to guide the learning
of the student.

To learn semantic-aware representations, we first transfer
the self-attention matrices between two branches to explore
co-reference relationships between input tokens. The semantic
knowledge is implicitly encoded and has promising potential
for figure skating scoring. We formulate the distillation loss
of the attention distribution by minimizing the divergence be-
tween the self-attention matrices of the teacher and the student,
ie., AT and AS. However, AT € RT:*Tv and AS € REXT
usually have different dimensions, where T; >> K. Therefore,
we apply max-pooling along the T3 /K dimension to generate
AT / AS_ which extracts the most salient feature and enhances
the feature representation capability, without losing useful
information. The distillation loss is therefore formulated as

T, h
1 «— . N
Eattn = m Z Z MSE(A;]:J’ A’i‘_})? (8)

i=1 j=1

where MSE is the mean squared error, h is the attention heads
in the Transformer. A; ; is the normalized attention for i-th clip
at j-th head.
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Besides constraining the attention distribution of teacher
and student branches, we also employ a contrastive loss [12]
between the output features. Especially, the noise contrastive
estimation (NCE) loss is used to align the teacher & student’s
feature representations by contrasting the target instance (H*)
with more negative samples and aligning with its positive
sample (H”). We use the average-pooling along the T;/K
dimension to map the student and teacher features to the
identical dimension, i.e., H7 and HS. And the objective loss
is defined as

exp(sim(HF, 0T) /7)
SN Iy zaexp(sim(HE HT) /7))

where 1f;; € {0,1} is an indicator function evaluating
to 1 iff j # 4, sim(u,v) = w'v/||ul|||v|| denotes the
dot product between f5 normalized uw and v (i.e.,, cosine
similarity), 7 denotes the temperature hyper-parameter. The
final loss is computed across all positive pairs in a mini-batch
(N). Although contrastive learning loss has been employed in
previous works [23], [24] for action assessment, we utilize
it to learn semantic-aware representations from the teacher
network, guaranteeing the consistency between the teacher &
student’s learned feature representations.

»Ccons = - IOg )

D. Figure Skating Scoring Loss

Here, we propose the loss function for figure skating
scoring. A common solution is to tackle this problem as a
regression task that maps the input video to the final score
provided by referees. As most of the same sports events are
competed in similar environment, the differences between the
same competition videos are often very subtle, and there are
slight differences in how the athletes perform the same actions.
Based on this insight, we follow [23], [24] to reformulate
the problem of action quality assessment as regressing the
relative scores with reference to another video that has a shared
category. We especially map the input video into the score
space where the differences between the action qualities can
be measured by the relative score. Therefore, for each video
pair (X, p, Xy q)s (Sp,S,) representing the ground truth of
action quality score, it needs to minimize the error between the
predicted relative score and the corresponding ground truth,
which is defined as

Escore = (AS - |‘§p - gq‘)Qa (10)

where AS is based on the output of features of these two
videos,

AS =Re(H,,H,), (11)

where Rg is the score regressor [24] parameterized by ©. Our
method has two branches, therefore, the relative score losses
are calculated in two branches based on the corresponding
extracted features, denoted as £I, . and £5  _ for teacher
and student branches respectively.

Furthermore, a score consistency constraint is defined for
the teacher and student branches to align the learned fea-
ture representations. The consistency constraint confines the

predicted relative score at the teacher branch is equal to the

calculated score in the student branch. Therefore, a consistency
loss function for the relative score is defined as

L:c»score = (AST - ASS)zv (12)

where AST and AS® represent the predicted relative scores
for teacher and student branches respectively.

Finally, the overall loss function of the proposed AQA
model is summarized as

Etotal = EZ;ore + Efcm«e + Eattn + ‘Ccons + Ec-score; (13)

where the weights for different parts are the same for simplic-
ity.

In the testing phase, we only use the feature representations
in the student branch, which are extracted by video backbone,
Transformer visual encoder, and atomic action decoder, to
predict the figure skating score. The teacher branch is only
used during training to transfer semantic information, which
guarantees efficiency and feasibility in a real-world deploy-
ment.

V. EXPERIMENT
A. Datasets and Implementation Details

1) Datasets: Besides our OlympicFS, the proposed method
is also evaluated on FS1000 [10] and Fis-v [1] datasets for
figure skating and MTL-AQA [13] dataset for diving to verify
the effectiveness of our method.

FS1000 has a training set of 1000 videos and a validation
set of 247 videos. There are totally eight categories of figure
skating competitions in this dataset, namely, men/ladies/pairs
short program, men/ladies/pairs free skating, and ice dance
rhythm dance/free dance. Besides TES and PCS, five addi-
tional scores [10] are reported for FS1000 dataset, includ-
ing Skating Skills (SS), Transitions (TR), Performance (PE),
Composition (CO), and Interpretation of music (IN). Fis-v
contains 400 videos for training and 100 for testing, which are
trimmed from the ladies single short program. The TES and
PCS are collected from the mark scheme of the figure skating
competition. MTL-AQA comprises 1412 diving videos from
16 distinct events, featuring both male and female athletes
performing on the 10m platform and 3m springboard. Each
video is labeled with various metrics, including the final score,
difficulty degree, and execution score assigned by the referees.
As recommended by [13], we adopt a split configuration where
1059 videos are used for training and 353 videos are reserved
for testing purposes. OlympicFS collects 200 (160 for training
and 40 for testing) videos from Olympic Winter Games in
Pyeongchang 2018 and Beijing 2022. It provides professional
commentary in addition to scores to explore the impact of
semantics on scoring performance.

2) Feature Extraction: As FS1000 has visual and music
inputs, we use the extracted features in [10] for a fair com-
parison. For Fis-v, which only contains video input without
additional text or audio annotations, we fine-tune our trained
student model on this dataset to show the effectiveness of our
method. For MTL-AQA, we follow the settings in [24], [27]
to make a fair comparison, which uses the I3D model [33]
pre-trained on Kinetics as the backbone. In addition, the text
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TABLE 11
COMPARISON WITH STATE-OF-THE-ART ON FS1000. FOR MSE, THE LOWER THE BETTER; FOR SPEARMAN CORRELATION, THE HIGHER THE BETTER.

Methods | Mean Square Error ()

Spearman Correlation (1)

\
‘ TES PCS SS TR PE CO IN ‘ TES PCS SS TR PE CO IN
C3D-LSTM [34] 308.30 25.85 0.92 0.99 1.21 0.97 1.01 0.78 0.53 0.50 0.52 0.52 0.57 0.47
MSCADC [28] 148.02 15.47 0.51 0.57 0.78 0.55 0.60 0.77 0.70 0.69 0.69 0.71 0.68 0.71
MS-LSTM [1] 94.55 11.03 0.45 0.49 0.76 0.43 0.47 0.86 0.80 0.77 0.78 0.76 0.79 0.78
M-BERT(Late) [51] 131.28 15.28 0.44 0.43 0.67 0.47 0.55 0.79 0.75 0.80 0.81 0.80 0.80 0.76
CoRe [24] 103.5 9.85 0.41 0.37 0.81 0.38 0.41 0.88 0.84 0.81 0.83 0.81 0.83 0.80
TPT [27] 80.00 8.88 0.34 0.37 0.63 0.34 0.39 0.88 0.83 0.82 0.82 0.81 0.82 0.81
MLP-Mixer [10] 81.24 9.47 0.35 0.35 0.62 0.37 0.39 0.88 0.82 0.80 0.81 0.80 0.81 0.81
Our SGN | 79.08 8.40 0.31 0.32 0.61 0.33 037 | 0.89 0.85 0.84 0.85 0.82 0.85 0.83
feature of MTL-AQA dataset is extracted by the BERT model. TABLE III
We extract video features by Video Swin Transformer [46], COMPARISON WITH STATE-OF-THE-ART ON FIS-V DATASET. SP. CORR. IS
. " SHORTED FOR SPEARMAN CORRELATION. “~” INDICATES NOT REPORTED.
and text features by BERT [49] for OlympicFS. The number
of segments is set as 7, = 200 with 32 frames for each Methods MSE (1) Sp. Corr. (1)
segment. , ) ) TES PCS TES PCS
3) Evaluation Protocols: To make a fair comparison with
. , . C3D-LSTM [34] 39.25 21.97 0.29 0.51
previous works [1], [10], we adopt Spearman’s rank correlation MSCADC [28] 75.93 11.94 0.50 0.61
as an evaluation metric, which is defined as MS-LSTM [1] 22.64 9.84 0.59 0.73
M-BERT (Late) [51] 27.73 12.38 0.53 0.72
_ >ilpi—p)ai —q) (14) GPLT[S) - - 0.69 0.82
p= \/Z(p — }5)2 Z(q — q)z’ CoRe [24] 23.50 9.25 0.66 0.82
(G i\ TPT [27] 27.50 11.25 0.57 0.76
where p and ¢ represent the ranking for each sample of  MLP-Mixer [10] 19.57 7.96 0.68 0.82
two series respectively. Additionally, to give more insights  Our SGN 19.05 7.96 0.70 0.83
into our model, the Mean Square Error (MSE) is also used
to evaluate our model. Meanwhile, we further report the
TABLE IV

relative L2-distance (R-/5) [24] for MTL-AQA to measure
the performance more precisely. Given the highest and lowest
SCores Smax and Spin, R-#5 is defined as

Rty — L i( sk — 8l )
? K — Smax — Smin ’
where s, and §p represent the ground-truth and prediction
scores for the kth sample. Spearman’s correlation focuses more
on the ranks of the predicted scores while MSE and R-/¢5 focus
on the numerical values.

4) Implementation Details: For all experiments, we set the
feature dimension D = 128. We adopt the Adam optimizer
with the initial learning rate le-3, and the weight decay is set
to zero. We select ten exemplars for an input test video during
inference and vote for the final score using the multi-exemplar
voting strategy [24]. The attention layer in both student and
teacher branches is set as one with four heads. We set the
number of atomic queries in the student branch as four. We

conduct experiments on a machine with two NVIDIA GeForce
RTX 3090 GPUs and one 2.40GHz CPU.

5)

B. Comparison with State-of-the-Art

1) FS1000: In TABLE II, we report the performance com-
parison to the state-of-the-art methods on FS1000 dataset,
which include CNN-based [28], [34], LSTM-based [1],
Transformer-based [51] and MLP-based [10] approaches.
FS1000 dataset consists of different types of figure skating
videos, which highly tests the robustness of the model. We

COMPARISON WITH STATE-OF-THE-ART ON MTL-AQA DATASET. “W/0

DD” MEANS THAT TRAINING AND TESTING PROCESSES DO NOT UTILIZE

DIFFICULTY DEGREE LABELS, “W/ DD” MEANS EXPERIMENTS UTILIZING
DIFFICULTY DEGREE LABELS.

Methods (w/o DD) Sp. Corr. (1) R-£2(%x100) () Year
Pose+DCT [7] 0.2682 - 2014
C3D-LSTM [34] 0.8489 - 2017
C3D-AVG-MTL [28] 0.9044 - 2019
I3D+MLP [30] 0.8921 0.707 2020
USDL [30] 0.9066 0.654 2020
MUSDL [30] 0.9158 0.609 2020
CoRe [24] 0.9341 0.365 2021
TSA-Net [52] 0.9422 - 2021
FSP [23] 0.8798 - 2022
ESP [23] 0.9230 - 2022
TPT [27] 0.9451 0.322 2022
Our SGN 0.9500 0.274

Methods (w/ DD) Sp. Corr. (1) R-l2(x100) (})  Year
USDLpp [30] 0.9231 0.468 2020
MUSDL [30] 0.9273 0.451 2020
I3D+MLP [24] 0.9381 0.394 2021
CoRe [24] 0.9512 0.260 2021
TPT [27] 0.9607 0.238 2022
Our SGN 0.9607 0.232

replace text with audio, which is the same as [10]. Our
SGN outperforms all previous methods. In particular, our
method gets a lower MSE score and a higher Spearman
correlation than MS-LSTM [1], which demonstrates extracting
semantic-aware representations does work in understanding
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TABLE V
COMPARISON WITH STATE-OF-THE-ART ON OLYMPICFS DATASET. WE
EVALUATED THE PERFORMANCE WITH THE PUBLICLY AVAILABLE SOURCE
CODE. # PARAMS REPRESENTS THE NUMBER OF PARAMETERS.

Methods MSE () Sp. Corr. () 4 pARAMS
TES PCS TES  PCS
MS-LSTM [1] 21223 21400 08085 07916  2.66M
GDLT [5] 20489 21638 08213 08240  3.16M
MLP-Mixer [10] 24050 25182 0.8008 0.8233  5.65M
TPT [27] 13802 6541 08880 08928  15.76M
CoRe [24] 16951 5951 08912 09034  2.05M
Our SGN 10429 57.86 09088 09230  1.47M
TABLE VI

ABLATION STUDIES ON THE MODEL COMPONENTS. EXPERIMENTS ARE
CONDUCTED ON OLYMPICFS.

Methods MSE () Sp. Corr. (1)
TES PCS TES PCS
Baseline 185.51 79.20 0.8617 0.8593
Encoder only 169.21 65.06 0.8780 0.8694
Student branch 152.73 62.27 0.8879 0.8774
Two branches 122.61 59.65 0.8934 0.9021
SGN 104.29 57.86 0.9088 0.9230

figure skating actions better. Meanwhile, we still achieve better
performance when compared to the strong MLP-Mixer [10].

2) Fis-v: The performance by different models in terms
of Spearman correlation and MSE are demonstrated in TA-
BLE III. We evaluate the performance with respect to TES
and PCS as in previous works. It is observed that our method
achieves comparable or better performance than existing meth-
ods. These experimental results verify our analysis that guided
by the semantic information, the student branch could also
obtain semantic-aware representations. Moreover, our finding
certainly opens a door for bringing multi-modality represen-
tation learning in video sports understanding.

3) MTL-AQA: Besides datasets for figure skating, we also
conduct experiments on the MTL-AQA dataset, which also
includes multi-modality inputs (i.e., visual and text) and is
designed for scoring diving actions. We summarize the per-
formance of our method on MTL-AQA in TABLE IV. Since
the MTL-AQA dataset includes degree of difficulty (DD)
annotations for diving actions, we also examine the impact
of DD on this dataset. We categorize all methods into two
groups: those that utilize the DD labels during the training
phase (bottom section of the table) and those that do not
(upper section of the table) as [27]. The experimental results
show that the proposed model achieves the best Spearman
correlation and R-/¢5 regardless of whether or not DD is used.
These results indicate that exploiting semantic information is
conducive to understanding sports videos better.

4) OlympicFS: We summarize the performance of different
methods in TABLE V. Besides our method, we also perform
experiments on recently proposed approaches [1], [5], [10],
[24], [27] with the publicly available source code. All training
recipes are kept the same for a fair comparison. All methods
use the same feature backbone [46], which is frozen during

TABLE VII
ABLATION STUDIES ON LOSS FUNCTIONS. THE METRIC MSE IS
REPORTED.
£score Eattn Econs ['c—cons TES PCS
1 v X X X 152.73 62.27
2 v v X X 140.14 61.73
3 v 4 v X 122.61 59.61
4 v X v v 125.55 60.64
5 v v v v 104.29 57.86

training. For [10], we replace its audio information with
our textual information. It is observed that regardless of the
type of score, our framework delivers better results than
others. Especially, our method has a higher Spearman’s rank
correlation and lower MSE than CoRe [24], indicating that
exploring semantic-aware representations does work in scoring
figure skating.

For complexity, our method needs fewer trainable parame-
ters compared to previous approaches. Note that the complex-
ity of the backbone and the score regressor is not included
when calculating the parameters. In summary, the proposed
method achieves the best trade-off between accuracy and
model complexity.

C. Ablation Studies

1) Different Model Components: In this section, we per-
form a set of ablation studies to evaluate the effectiveness of
our proposed model components and designs. All experiments
use [46] for feature extraction. In detail, we mainly analyze
the following models:

o Baseline: It directly pools the video features without
Transformer and uses the regressor [24] for scoring.

o Encoder only: The visual encoder is used for feature
extraction. The atomic queries are not used here.

o Student branch: We define a set of atomic queries in
the student branch. The Transformer visual encoder and
atomic action decoder are also used. Only scoring loss is
used as supervision.

e« Two branches: Besides the student branch, the teacher
is also used, but the fusion is made by the add operation.

¢ SGN: Our proposed method in Section IV.

Experimental results are shown in TABLE VI. Firstly, it is
observed that by using the Transformer, more useful features
could be extracted, leading to improved scoring accuracy.
The performance improvement achieved (from “Encoder only”
to “Student branch”) by using the atomic queries validates
the effectiveness of atomic queries. Such an improvement
is further enlarged when introducing both text and video
clues in figure skating (i.e., two branches), which further
demonstrates that semantic learning is really important in this
field. Furthermore, a considerable boost is also achieved when
using our SGN, which agrees with our analysis that compared
to directly adding semantic and text features, SGN could more
effectively explore the semantic correlations in sports videos.

2) Loss Function: TABLE VII shows the ablation studies
on the loss functions in Section IV-D. Note that the results
generated by only using Lscore (the 1st row) are the same
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TABLE VIII
ABLATION STUDIES ON THE HYPER-PARAMETERS, INCLUDING THE
ATTENTION LAYERS (I) AND ATOMIC QUERIES (n).

MSE (]) Sp. Corr. (1)
TES PCS TES PCS
=1 104.29 57.86 0.9088 0.9230
=2 123.27 56.28 0.8965 0.9261
=3 128.69 69.89 0.8843 0.8994
n=4 104.29 57.86 0.9088 0.9230
n=2~8 121.98 58.44 0.9033 0.9234
n=12 110.61 59.39 0.9108 0.9184
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Fig. 5. Visualization of cross-attention weights in the student branch during
testing. The first row shows the weight curve of atomic queries on videos.
The next five rows are video segments corresponding to five markers on the
curves, Le., (a), (b), (c), (d), and (e).

as the student branch in TABLE VI. By mimicking the
distribution of attention (the 2nd row), improvements are
achieved compared to the baseline, which demonstrate the
effectiveness of attention distillation. The feature (L.,,s) and
score (L¢.cons) consistency constraints in the 3rd and Sth rows
further verify the efficacy of the alignment schema. In the end,
the combination of all the loss terms gives the best perfor-
mance, confirming that our proposed attention distillation loss,
hidden embedding contrastive loss and scoring consistency
constraint are complementary to each other.

3) Hyper-parameters: This section will study the effect
of some important hyper-parameters, which include the at-
tention layers and atomic queries. Firstly, it is observed in
TABLE VIII (upper) that using more attention layers would
import negligible or no improvement in performance. Con-
sidering the effectiveness and efficiency, we use one attention
layer for all experiments. In addition, we summarize the effect
of queries in TABLE VIII (lower). It is observed that there is
no significant improvement when increasing n. We conjecture
it is because too many queries may bring ambiguity to the
model. Therefore, the number of queries is set to four.

D. Visualization

Fig. 5 shows the cross-attention weights computed by
Eq. (6) of atomic queries on a video sequence in the student
branch during testing. The different fluctuations in the weight
curve demonstrate different attention patterns. It is observed
that our method pays more attention to the important mo-
ments in the video (such as spin and jump), which verifies
our analysis that our method could extract semantic-aware
representations in figure skating. In Fig. 5(e), it is observed
that the weight of cross-attention is relatively high, but there
are no crucial actions in this timestamp. By analyzing the
preceding sequence, we find that this timestamp corresponds
to the end of a step sequence. We conjecture that it is because
the commentator’s narration occurs after the step sequence.

VI. CONCLUSION

We have proposed an effective teacher-student network
to learn semantics-guided representations for scoring figure
skating. Firstly, we define a set of atomic queries to mimic the
attention distribution in the teacher branch, where the teacher
branch uses visual and text inputs to learn semantic-aware
representations. In addition, we also propose three auxiliary
losses to align features in two branches. Experimental results
on public (Fis-v, FS1000, and MTL-AQA) and newly collected
(OlympicFS) datasets verify the effectiveness and efficiency of
our method.
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