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Sheared Epipolar Focus Spectrum for Dense
Light Field Reconstruction

Yaning Li, Xue Wang, Guoqing Zhou, Hao Zhu and Qing Wang, Senior Member, IEEE

Abstract—This paper presents a novel technique for the dense reconstruction of light fields (LFs) from sparse input views. Our
approach leverages the Epipolar Focus Spectrum (EFS) representation, which models the LF in the transformed spatial-focus domain,
avoiding the dependence on the scene depth and providing a high-quality basis for dense LF reconstruction. Previous EFS-based LF
reconstruction methods learn the cross-view, occlusion, depth and shearing terms simultaneously, which makes the training difficult
due to stability and convergence problems and further results in limited reconstruction performance for challenging scenarios. To
address this issue, we conduct a theoretical study on the transformation between the EFSs derived from one LF with sparse and dense
angular samplings, and propose that a dense EFS can be decomposed into a linear combination of the EFS of the sparse input, the
sheared EFS, and a high-order occlusion term explicitly. The devised learning-based framework with the input of the under-sampled
EFS and its sheared version provides high-quality reconstruction results, especially in large disparity areas. Comprehensive
experimental evaluations show that our approach outperforms state-of-the-art methods, especially achieves at most > 4 dB
advantages in reconstructing scenes containing thin structures.

Index Terms—Epipolar Focus Spectrum (EFS), Sheared EFS, Focal stack, LF reconstruction.

✦

1 INTRODUCTION

L IGHT field (LF) imaging has emerged as a powerful
tool for capturing images with novel and unique effects,

including free-viewpoint imaging [1], [2], all-in-focus imag-
ing [3], and 4D editing [4], [5]. Due to its remarkable capa-
bilities, LF imaging has gained considerable attention in the
computational photography community [6]. Nevertheless, a
fundamental challenge in LF imaging is the ‘spatio-angular
resolution tradeoff’ [7], [8], [9], which limits the acquisition
resolution of LF systems. Specifically, an increase in reso-
lution in one dimension results in a decrease in resolution
in another dimension. Hence, it is of utmost importance to
explore strategies for reconstructing a densely-sampled LF
from a sparsely-sampled acquisition.

In recent years, several approaches have been proposed
in the literature for reconstructing high-angular resolution
light fields (LFs). Despite the significant progress, several
challenges remain. In the spatial domain, prevailing meth-
ods, such as those in [10], [11], [12], [13], [14], [15], [16], entail
estimating depth, warping input views, and refining the tex-
tures of novel views. Despite considerable research efforts to
enhance depth accuracy [10], scene representation [17], [18],
and texture consistency [19], [20], it is still challenging to
preserve the view-consistency of the reconstructed LF due
to the inherent nature of independent view optimization
employed in these methods. Moreover, occlusion accumu-
lation in regions with large disparities causes significant
artifacts. In the frequency domain, several existing works,
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such as those in [21], [22], [23], [24], [25], focus on Fourier
spectral completion using the dimensional gap between the
3D focal stack and the 4D LF [22], sparsity in the continuous
Fourier domain [23], or band-consistency in the shearlet do-
main [24]. However, these methods only model the Fourier
features of non-overlapped and continuous epipolar plane
image (EPI) lines, and are incapable of modeling EPI lines
with intersection and discrete EPI points/segments, i.e., oc-
clusion and large disparities. The fundamental incomplete-
ness of these models results in artifacts in the reconstructed
occlusion boundaries.

A novel representation, known as the Epipolar Focus
Spectrum (EFS), has been recently introduced for the pur-
pose of 4D LF anti-aliasing refocusing [26] and dense recon-
struction [27]. The EFS possesses semantic attributes that are
invariant to scene depth. Rendering a complete EFS literally
contributes to the task of view-consistent LF reconstruction.
However, the existing literature [26], [27] is predominantly
focused on the distribution of the magnitude spectrum
within the EFS, with limited analysis of the transformation
between EFSs derived from the sparse and dense LF data.

In this paper, we present an enhanced formulation of
the EFS theory and promote its applicability in the domain
of LF reconstruction. Our analysis reveals that the EFS
of a densely-sampled LF can be represented as a linear
combination of three constituent terms, namely, the EFS of
the corresponding sparsely-sampled LF, a sheared sparse
EFS, and a cross term. Based on this insight, we introduce
a novel shearing module that facilitates the preprocessing
of the input sparse EFS to generate a coarse approximation
of the dense EFS. Subsequently, we propose an Occlusion-
aware Dual-stream U-Net (ODU-Net) architecture that is
specifically designed to refine the coarse approximation.
Finally, the reconstructed LF is obtained via the application
of an inverse Fourier slice photography technique [28] to
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the refined EFS. Compared to previous methods, the shear
operation employed in our approach reduces the difficulty
of spectrum completion during the network training, re-
sulting in improved accuracy. We demonstrate the efficacy
of our proposed approach through extensive experimental
evaluations conducted on both synthetic and real-world LF
datasets (as detailed in Sec. 5).

The paper makes several significant contributions, in-
cluding:

1) The formal breakdown of the EFS based on a sparsely
sampled EFS. The relationship between the EFSs of sparse
and dense LFs is analyzed and concluded, providing a solid
theoretical foundation for high-quality, view-consistent LF
reconstruction.

2) A specially designed ODU-Net with phase modu-
lation for dense LF reconstruction. When applied to the
sheared sparse EFS, ODU-Net not only alleviates the train-
ing difficulty of spectrum completion, but also improve the
accuracy of view reconstruction.

2 RELATED WORK

2.1 LF representation and reconstruction in the image
domain
Levoy and Hanrahan [29] introduce a 4D LF representation,
denoted by L(u, v, x, y), which uses a two-parallel-plane
model. Here, (u, v) and (x, y) represent the intersections
of the ray with angular/camera and spatial/image planes,
respectively. Various LF reconstruction methods have been
proposed. One common approach involves estimating the
scene depth [30], [31], warping input views to synthesize
novel views [11], [19], and gradually applying convolutional
neural networks (CNNs) for LF reconstruction. Taking the
sparse 4D LF as the network input, Wang et al. [32] propose
a pseudo-4D neural network that directly reconstructs the
LF in the angular domain. Yeung et al. [33] propose an
LF reconstruction method that alternates convolution of
the angular and spatial dimensions, thereby improving the
efficiency of viewpoint reconstruction. Kalantari et al. [14]
estimate the depth and color of each viewpoint sequentially
using two convolutional neural networks. Yoon et al. [34]
achieve super-resolution reconstruction of adjacent views
using a data-driven learning method.

Based on the structural properties of angular-dimension
sampling in the light field, the EPI can be utilized to repre-
sent the 4D LF [35]. The use of EPI for view reconstruction
enables better maintenance of the angular consistency of
the LF [36]. As a result, EPI has gained widespread use in
angular super-resolution. Wu et al. [37] convert the angular
domain reconstruction of a 4D LF into a one-dimensional
super-resolution of the 2D EPI. Guo et al. [38] transform the
LF reconstruction problem into the prediction of the residual
between the EPIs of dense and sparse LF. Zhu et al. [36]
further improve the super-resolution performance on EPI
in large disparity areas by introducing an LSTM module.
Vagharshakyan et al. [24] employ an iterative regularized
reconstruction by utilizing a sparse representation of the
underlying EPIs in the shearlet domain.

The 4D LF representation exhibits high redundancy, and
the EPI-based technique fails to provide accurate texture
information for the scene. In contrast, refocused images can

describe the scene’s texture information and convey the rel-
ative depth of objects through blurring [35]. Consequently,
the focal stack is commonly used for LF representation [22],
and is widely adopted for LF reconstruction. Levin and
Durand [22] propose a 3D focal stack spectral completion
method for dense LF reconstruction. Sakamoto et al. [39]
encode the focal stack with a wavelet-based method, and
then reconstruct the LF from the focal stack using a linear
view synthesis method [22].

Superpixel [4], geometry-aware graph [40], [41], hyper-
graph [42] and multiplane images (MPIs) [17], [43] can
also represent LFs considering the depth and texture in-
formation. Superpixel and hypergraph representations are
generally used for LF segmentation [4], [5], [42] and com-
pression [40], [44], [45]. Srinivasan et al. [43] propose to
utilize the MPI representation to synthesize the viewpoint
from a narrow baseline stereo pair. Based on a learning
gradient descent algorithm, Flynn et al. [46] generate MPIs
from a sparse set of viewpoints for LF reconstruction.
Mildenhall et al. [18] further improve the performance of
LF reconstruction by fusing multiple MPIs. Tucker et al. [47]
utilize a single image to construct MPIs and perform view
synthesis.

These LF representations are highly correlated with
scene depth or contain redundant information. Features
extracted or learned from LF with a small disparity range
may lead to artifacts when applied to LF with a large
disparity range.

2.2 LF representation and reconstruction in the Fourier
domain
Ng [28] proposes the Fourier slice model for LF based on
the Fourier slicing theory introduced by Levoy [48]. This
model provides a 2D Fourier slice representation of the
LF. In subsequent studies, Shi et al. [23] and Levin and
Durand [22] achieve LF reconstruction for small samples by
analyzing the sparsity of Fourier slices, respectively.

Le Pendu et al. [25] introduce the Fourier disparity layer
(FDL) as a novel representation and utilize it for LF recon-
struction. The FDL representation enables the generation of
various views through a straightforward process of shifting
and filtering.

Based on disparity cues and Fourier slicing theory, Li et
al. [26] propose an EFS representation for LF. They find that
each spectral line in the EFS corresponds to a viewpoint
of the LF. Therefore, the dense LF reconstruction task is
formulated as an EFS completion problem and solved using
a learning framework [27].

The Fourier domain LF representations described earlier
do not account for the occlusion present within a scene,
leading to a lack of sparse spectrum features. In this study,
our objective is to examine the correlation between the EFS
derived from the sparsely sampled LF and the EFS associ-
ated with the targeted reconstructed views. To accomplish
this, we introduce an occlusion model that minimizes the
error in LF reconstruction.

3 THEORETICAL ANALYSIS

To better analyze the relationship between the sparse EFS
and dense EFS, we will first introduce the background and
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TABLE 1
Notations of symbols

Notation Definition

L(u, v, x, y) 4D LF
En(u, x) EPI with n views
Ekn(u, x) EPI with k ∗ n views
En(ωu, ωx) Fourier spectrum of En(u, x)
Fn(f, ωx) Rearranged En(ωu, ωx)
Fn(f, x) Focal stack formed from En(u, x)
f Relative focused depth in building Fn(f, x)
∆α Refocus step for building Fn(f, x)
uref Reference view for building Fn(f, x)
∆F (f, x) Focal stack from additional (k − 1)n views
EFSn(ωf , ωx) Epipolar focus spectrum of En(u, x)
∆EFS(ωf , ωx) Fourier spectrum of ∆F (f, x)
FT1D(·) 1D Fourier transform operator
FT2D(·) 2D Fourier transform operator

the notations used throughout the paper. Then, a complete
theoretical analysis of the sheared EFS is derived.

3.1 Notations

Given a 4D LF L(u, v, x, y), En(u, x) is the EPI by fixing
(v, y) = (v∗, y∗), where n is the number of views in the
EPI. Ekn(u, x) refers to the EPI with k-times dense sam-
pling. Note that the same unit is employed for modeling
both En(u, x) and Ekn(u, x), i.e., the set of view indices
in En(u, x) is 1, k + 1, 2k + 1, . . . , (n− 1)k + 1, while the
set of view indices in Ekn(u, x) is 1, 2, . . . , nk. En(ωu, ωx)
represents the Fourier spectrum of En(u, x), and Fn(f, ωx)
is the rearrangement of En(ωu, ωx) after slicing.

Fn(f, x) is the focal stack formed from En(u, x) where
f refers to the relative focused depth. It should be noted
that Fn(f, x) is constructed with a refocus step of ∆α.
The reference view in Fn(f, x) is uref , which is set as the
central view throughout the paper. ∆F (f, x) refers to the
focal stack formed from additional (k − 1)n views, i.e., the
views {2, 3, ..., k, k+2, k+3, ..., 2k, ..., (n− 1)k+2, ..., nk}.
EFSn(ωf , ωx) is the epipolar focus spectrum of En(u, x),
or in other words, the Fourier spectrum of Fn(f, x).
∆EFS(ωf , ωx) is the Fourier spectrum of ∆F (f, x).

FT1D(·) and FT2D(·) are 1D and 2D Fourier transforms
to the signal ·, respectively. Tab. 1 lists all symbols used
throughout the paper.

3.2 Background

Given a 2D EPI En(u, x), its EFS could be constructed in two
ways [27]. In the spatial domain, the focal stack Fn(f, x) is
firstly constructed and then processed by the 2D Fourier
transform,

Fn(f, x) =
1

n

n∑
u=1

En(u, x+ f(u− uref )), (1a)

EFSn(ωf , ωx) = FT2D(Fn(f, x)). (1b)

In the Fourier domain, the spectrum En(ωu, ωx) is firstly
obtained and then rearranged in a slice way. Finally, the 1D

Fourier transform is applied to the rearranged EPI spectrum,

Fn(f, ωx) = En(−fωx, ωx), (2a)
EFSn(ωf , ωx) = FT1D(Fn(f, ωx)). (2b)

Please refer to the original EFS paper [27] and the Fourier
slice photography theory for the equivalence of the above
equations.

According to [26], [27], the pattern of EFS is indepen-
dent/irrelevant to the scene depth, and there is a one-to-one
correspondence between each EFS line and the view in the
LF. All lines pass through the origin. The slope of each line is
determined by the refocus step ∆α and the interval between
the current view and the reference view.

3.3 Representing a dense focal stack from a sparse one

According to the one-to-one correspondence between the
view and EFS line, the task of reconstructing a dense LF
Ekn from a sparse one En could be modeled as ‘inserting’
the energy bands of other (k − 1)n views into EFSn and
then modulating the phase. It is the key to the ‘inserting’
process by representing the information of other (k − 1)n
views from the input n views.

Let us start with the focal stack representation. Accord-
ing to the linear-weighting composition nature of the focal
stack generation from EPI, the focal stack Fkn could be
decomposed as the sum of Fn and ∆F ,

Fkn =
1

k
Fn +

k − 1

k
∆F. (3)

Correspondingly, Eq. 3 could be rewritten in the Fourier do-
main according to the linear property of Fourier transform,

EFSkn =
1

k
EFSn +

k − 1

k
∆EFS. (4)

In the following paragraphs, we will successively analyze
the expansion of Eqs. 3 and 4 in the single-point and multi-
point scenes.

3.3.1 Scene with single-point

To simplify the derivation of ∆F from Fn, we first focus on
a simple scene in which only one point P exists in the space.
Spatial domain. Fig. 1 gives an intuitive illustration of the
case of one point with k = 2 and n = 3 sampling. Fig. 1(a)
shows the focal stack Fn. The pixel p lies at the focused
depth f∗

p . p1, p3 and p5 come from the views u1, u3 and
u5 respectively and lie at a defocus depth f . According to
the Lambertian assumption, the intensities of p1, p3, and p5
could be formulated as a mixture of the intensity of p and the
background. Considering only one point exists in the space,
i.e., the intensity of the background is a constant value C .
As a result, the intensity of pj(f, xj) could be modeled as

∀j ∈ {1, 3, 5} , Fn(f, xj) =
1

3
Fn(f

∗
p , x) +

2

3
C. (5)

Fig. 1(b) shows the focal stack ∆F formed from other 3
views and we also have

∀j ∈ {2, 4, 6} ,∆F (f, xj) =
1

3
∆F (f∗

p , x) +
2

3
C. (6)
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Fig. 1. Analysis of the shear operation on the focal stack and EFS. (a)
Fn(f, x) comprised of n = 3 views. (b) ∆F (f, x) shearing from (a). (c)
Fkn(f, x) comprised of 2 ∗ n = 6 views. (d) EFS of (a). (e) EFS of (b),
which can be also obtained by the shearing and linear phase modulation
from (d). (f) EFS of (c).

Under the Lambertian assumption, we have Fn(f
∗
p , x) =

∆F (f∗
p , x). By combining Eqs. 5 and 6, the following equa-

tion holds,

∀i ∈ {1, 3, 5}, j ∈ {2, 4, 6} , Fn(f, xi) = ∆F (f, xj). (7)

Since the baseline between neighboring views in Fn is equal
to the baseline in ∆F (for any i ∈ {2, 4, 6}, ui − ui−1 =
ui+1 − ui), ∆F could be represented by shearing Fn,

∆F (f, x) = Fn(f, x+∆x), (8)

where ∆x models the interval between the lines pp1 and
pp2 along the focus line f in Fig. 1(c) (e.g., ∆x = 0 when
scanning the line f∗

p ). According to the radius of defocus
blur in focal stack construction [26], we have ∆x = ∆u(f∗

p −
f), where ∆u = u2 − u1 describes the distance between the
first set of views {u1, u3, u5} and the second set of views
{u2, u4, u6}. As a result, Eq. 8 can be expanded as

∆F (f, x) = Fn(f, x+∆u(f∗
p − f)). (9)

Furthermore, by extending the simple example (k = 2,
n = 3) to a general case, Eq. 9 is reformulated as

∆F (f, x) =
1

k − 1

k−1∑
j=1

Fn(f, x+∆uj(f
∗
p − f)), (10)

where ∆uj = u1+j − u1, referring to the distance between
the original set of views {u1, uk+1, u2k+1, ..., unk+1} and the
j-th set of reconstructed views {u1+j , uk+1+j , ..., unk+1+j}.
Consequently, Eq. 3 could be rewritten as

Fkn(f, x) =
1

k
Fn(f, x) +

k − 1

k
∆F (f, x)

=
1

k

(
Fn(f, x) +

k−1∑
j=1

Fn(f, x+∆uj(f
∗
p − f))

)
.

(11)

Fourier domain. The shearing process described in ∆F of
Eq. 11 can be formulated in an affine transformation(

f ′

x′

)
=

(
1 0

−∆uj 1

)
︸ ︷︷ ︸

A

(
f
x

)
+

(
0

f∗
p∆uj

)
︸ ︷︷ ︸

x
p
0

. (12)

According to the affine theorem of Fourier transform [49],
the affine transform in the spatial domain is equivalent
to a combination of affine transform, amplitude scaling,
and phase modulation in the Fourier domain. In short,
ω = (ωf , ωx)

⊤, therefore,

EFSkn

=
1

k
EFSn +

k − 1

k
∆EFS

=
1

k

(
EFSn +

k−1∑
j=1

1

|det(A)|e
2πix

p
0
⊤A−⊤ωEFSn

(
A−⊤ω

))

=
1

k

(
EFSn +

k−1∑
j=1

e2πix
p
0
⊤A−⊤ωEFSn

(
A−⊤ω

))
(13)

where i represents an imaginary number satisfying i2 = −1.
Comparing Eqs. 11 and 13, it is found that the shearing

process can only be achieved in the spatial domain when the
focused depth of the point is known, however, the shearing
process is separable in the Fourier domain, and the shearing
in the power spectrum is independent of the focused depth
of the point.

3.3.2 From single-point to multi-point scene
The above analysis focuses on the case with only one point.
When there exist many points in the scene, Eq. 11 is inap-
propriate since the focused depth varies from point to point.
To analyse the case with multiple points, additional masks
{Mp}Np

p=1 are introduced to separate Fn into multiple focal
stacks {F p

n}
Np

p=1 where each F p
n is a focal stack including

only one point and Np denotes the number of points in the
scene. Apart from this, the cross-view phenomenon appears
(see the blue box in Fig. 2). It is essential to add the third
term F cross

n to model the cross-view effects. As a result,
Eq. 11 could be modified as

Fkn(f, x)

=
1

k

Fn(f, x) +

k−1∑
j=1

Np∑
p=1

MpFn(f, x+∆uj(f
∗
p − f))

+ F cross
n ,

(14)
where the matrix Mp comprises only values {0, 1} and∑Np

p=1 M
p = 1. Here 1 represents a matrix filled entirely

with the value 1. Fig. 2 illustrates the concept of decom-
posing a focal stack with multiple points into multiple focal
stacks, each containing a single point. Combining with the
affine theorem [49] and the convolution theorem [50] of
Fourier transform, the formula could be written as

EFSkn

=
1

k
EFSn +

k − 1

k
∆EFS

=
1

k
EFSn︸ ︷︷ ︸

Original term

+
1

k

k−1∑
j=1

Np∑
p=1

FT2D(Mp)︸ ︷︷ ︸
Occlusion term

∗

e2πix
p
0
⊤A−⊤ω︸ ︷︷ ︸

Depth term

EFSn

(
A−⊤ω

)
︸ ︷︷ ︸

Shearing term


+ FT2D(F cross

n )︸ ︷︷ ︸
Cross term

,

(15)

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3337516

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on December 01,2023 at 03:41:04 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

F
n

F
n

M
as

k
s

w
it

h
 o

n
e 

p
o
in

t
F

n
F

n
w

it
h
 o

n
e 

p
o
in

t
F

n

S
h
ea

ri
n

g
F

n
F

n
cr

o
ss

F
n
cr

o
ss

C
o
m

b
in

at
io

n

F
k
n

F
k
n

Fig. 2. Illustration of representing Fkn from Fn when multiple points
exist in the scene. To enhance the visualization of F cross

n , we adjust
the contrast of the blue box (middle rightmost) to make the cross-term
visible.

where ∗ represents the convolution operator.
Shared shearing operation. It is worth noting that im-
plementing the shearing process (Eq. 14) in the spatial
domain is challenging due to the coupling of the shearing
operation with depth. Fortunately, in the Fourier domain,
the depth and shearing operations are decoupled. Since
all points share the same affine transform matrix A, the
shearing process can be achieved by applying the same
affine transform A−⊤ to the EFS. Compensating for depth
can then be accomplished in the phase component of the
EFS.
Depth as phase modulation. According to Eq. 15, the depth
information xp

0 of each point p does not influence the power
spectrum of the EFS and only works on the phase spectrum
(i.e., the depth term).
Occlusion analysis. Apart from the depth and the shearing
terms, the Fourier transform of the mask Mp indicates
the occlusion information of each point. Fig. 3 illustrates
the generation and appearance of the occlusion in the fo-
cal stack. In Fig. 3(a), there is no occlusion in the three
input views (the solid cameras and lines), however, the
occlusion appears when the other three views (the dashed
cameras and lines) are synthesized, i.e., the orange rectangle
is occluded by the green one in the top view. Fig. 3(b)
shows the corresponding focal stack. Due to the occlusion
of point P by O, the line passing through p and o is colored
green, which matches the color of point o. Based on these
observations, Fig. 3(c) and 3(d) illustrate the masks of points
p and o, respectively. It is worth noting that the mask of
point p comprises only 5 views, while o exhibits 6 views,
indicating occlusion between p and o. Consequently, the
occlusion could be obtained from the masks {Mp}Np

p=1.
Cross-view effects. Additionally, a cross term is introduced
in Eq. 15. Fig. 2 demonstrates the cross-view phenomenon
in the focal stack. Compared with the original term and the
shearing term in Eq. 15, the number of cross-view points
is much smaller than the total number of pixels. We have
conducted several experiments to evaluate the order of
magnitude of the term F cross

n , and find that F cross
n takes

over 2% ∼ 8% of the whole focal stack. For more detailed
information, please refer to the supplementary material.

Fig. 3. Occlusion analysis for the EFS shearing. (a) is the image model
with occlusion under different focal layers. We assume each constituent
camera in the array operates as a pinhole camera, with each ray repre-
senting an angular sample of the scene. (b) is the focal stack of points P
and O. P and O are occluded in some views. (c) and (d) are the masks
of points P and O, respectively.

In summary, it is concluded that,

Proposition 1. Given two focal stacks Fkn and Fn formed
from densely and sparsely sampled LFs respectively, Fkn could
be represented by Fn and the phase modulated sheared Fn in the
Fourier domain, i.e., the original and sheared EFSn.

4 SHEAR-EFS-BASED DENSE RECONSTRUCTION

Based on the transformation model between the sparse
EFSn with only n views and the dense EFSkn with kn
views (Eq. 15), a two-step learning-based framework is
proposed to achieve the dense LF reconstruction. In the first
step, the shearing operation is applied to the input EFSn

for obtaining the shearing term in Eq. 15. In the second step,
the original EFSn and its sheared version are accumulated
to obtain the Coarse−EFSkn. Then, the Coarse−EFSkn is
fed into a neural network to compensate for the spectrum.
The framework of the proposed dense LF reconstruction is
shown in Fig. 4. Previous works [26], [27] take the original
EFSn as the input and the network focuses on learning all
four terms simultaneously, i.e., the cross, occlusion, depth,
and shearing terms in Eq. 15. Different from [26], [27], the
proposed ODU-Net does not require learning the shearing
term in Eq. 15 through the network, which alleviates the
difficulty of training and allows for faster convergence. As
a result, the proposed method achieves better spectrum
compensation effectively and efficiently.

4.1 Shearing on under-sampled EFS

Given an under-sampled EPI, an aliased focal stack is ob-
tained by applying the shearing operation following Eq.
1(a) (see Fig. 4(a)), then a 2D Fourier transform operation is
applied to get the under-sampled EFSn using Eq. 1(b) (see
Fig. 4(b)). To reconstruct EFSkn with k times more views
than the input EFSn, the shearing operation is applied k−1
times according to the shearing term in Eq. 15. Then, the
original input EFSn is combined with its sheared version
to produce the Coarse−EFSkn (see Fig. 4(c)).
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Fig. 4. The pipeline of the proposed shear-EFS-based dense LF reconstruction. The whole procedure consists of preprocessing, shear operation,
EFS reconstruction, projection, and final optimization of the reconstructed EPI.

Fig. 5. (a) The architecture of the Occlusion-aware-Dual-stream U-Net (ODU-Net) for dense EFS reconstruction. (b) represents the U-Net
architecture adopted in [27]. (c) provides a detailed view of the phase modulation module.

4.2 EFS reconstruction
In this section, a network named Occlusion-aware-Dual-
stream U-Net (ODU-Net) is designed (see Fig. 5) to optimize
Coarse−EFSkn. According to Eq. 15, the depth acts as
a phase modulation e2πix

p
0
⊤A−⊤ω to the sheared EFSn.

Based on this observation, a phase modulation module
(depicted as the blue dashed box in Fig. 5(a) and Fig. 5(c)
for details) is first introduced to optimize the phase spec-
trum. Additional shortcut paths (illustrated as blue arrows
in Fig. 5(c)) are incorporated to relay information forward
through residual connections, which have proven useful in
accelerating the training speed of the network [51], [52].

Then, considering the uncertain occlusion and cross-
view effects discussed in Sec. 3.3.2, we employ a CNN to
adaptively learn the filter operator for deriving the mask
Mp (see Fig. 3(c) and Fig. 3(d)) and the cross term shown
in Eq. 15. Then the EFS reconstruction can be formulated as
the following unconstrained problem,

ˆEFSkn = Φθ∗
1

(
Ψθ∗

2

(∑k−1
j=0 EFSn(A

−⊤ω)
))

, (16)

(θ∗1 , θ
∗
2) = argmin

θ1,θ2

∣∣∣EFSkn− ˆEFSkn

∣∣∣+ λlosss, (17)

where Ψ(·) refers to the phase modulation module in the
proposed network, and Φ(·) models the occlusion term
and the cross term in Eq. 15. The parameters θ1 and
θ2 correspond to the optimization targets with Φ and Ψ,
respectively. The scalar λ is set to 1.5 for balancing the
contributions of the two loss terms.

The first term |EFSkn − ˆEFSkn| quantifies the MAE
(mean absolute error) between the reconstructed EFS and
the ground truth dense EFS. The second term losss enforces

the preservation of the conjugate symmetry within the re-
constructed EFS,

losss =
1

NfW

Nf−1∑
i=0

W−1∑
j=0

|EFS(ωi, ωj)−EFS(−ωi,−ωj)| .

(18)
Please refer to [26], [27] for the conjugate symmetry of EFS.

The architecture of the utilized neural network is illus-
trated in Fig. 5. Similar to the method adopted in [26], this
network employs a dual-stream U-Net to extract features
separately from the power spectrum and the phase spec-
trum, respectively. Nonetheless, before extracting features
from the phase spectrum, a phase modulation module is
introduced to optimize the phase spectrum obtained from
the shear operation. Throughout the feature extraction pro-
cess, filters are adaptively trained to acquire diverse scene
point masks Mp, thus disentangling scene occlusions. Sub-
sequently, the real and imaginary components are combined
using Euler’s formula to generate the real and imaginary
parts. Finally, the real and imaginary parts are concatenated
and forwarded to a convolutional neural network layer for
optimization (Please refer to the supplementary material of
[27] for the details of U-Net and CNN layers).

4.3 EPI refinement
Given the optimized ˆEFSkn from the ODU-Net, the cor-
responding EPI spectrum Ekn(ωu, ωx) could be directly
obtained by reversing the operations in Eqs. 2(a) and
2(b). By applying a 2D IFT (inverse Fourier transform)
to Ekn(ωu, ωx), one can obtain the densely-sampled EPI
Êkn(u, x).

However, due to the interpolation operation for con-
structing Ekn(ωu, ωx) from F̂kn(f, ωx), the ‘tailing’ effects
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(shown in the red boxes in Fig. 4(e)) and color distortion
(shown in the blue boxes in Fig. 4(e)) appear, especially in
the marginal views which are far away from the reference
view. Hence, an additional U-Net with a perceptual loss is
used to refine Êkn(u, x) (please refer to the supplementary
material of [27] for details).

The complete shear-EFS-based dense LF reconstruction
algorithm is given in Algorithm 1. H represents the height
of the sub-aperture image.

Algorithm 1
Input:

An under-sampled LF with n views and disparity range
drange.

Output:
The reconstructed dense LF with k ∗ n views.

1: for i = 1 to H do
2: Obtain the EPI En.
3: Get the under-sampled EFSn using Eq. 1.
4: Get the Coarse−EFSkn via the shear operation.
5: Reconstruct ˆEFSkn using the proposed ODU-Net

(Fig. 5).
6: Obtain Êkn by inversely operating Eqs. 2(a) and 2(b).
7: Refine Êkn using an additional U-Net.
8: end for
9: Output the reconstructed dense LF with k ∗ n views.

5 EVALUATIONS

We conduct experiments on both synthetic and real-world
LF datasets [53] to evaluate our proposed shear-EFS-based
dense LF reconstruction method. The real-world LF datasets
are captured by both the camera array and the plenoptic
camera (Lytro Illum [54]). We mainly compare our approach
with five state-of-the-art learning-based methods, Wu 2019
[55], Wu 2021 [56] (without explicit depth estimation), LLFF
[57] (MPI-based), Guo 2023 [16] and the EFS-without-shear
[27] (EFS w/o shear). It can be observed that Wu 2021 [56],
LLFF [57], Guo 2023 [16] and EFS-without-shear [27] are
retrained on our training date using the released training
code for a fair comparison. For Wu 2019 [55] without the
original code being released, we use the trained model
provided by the authors.

Quantitative evaluations are performed by measuring
the average PSNR and SSIM metrics over the synthetic
views of the luminance channel. In the ablation experiments,
we analyze the impact of the number of shearing operations,
the bound of downsampling, and the effect of the phase
modulation module, respectively.

5.1 Datasets and implementation details
During the training process, both synthetic LFs (rendered
by POV [58]) and real-world LFs are utilized. The synthetic
dataset comprises 12 LFs containing complex textured struc-
tures, rendered using the automatic LF generator [36], [58].
Among these, 7 LFs are allocated for training, while 5 are
reserved for testing. The real-world dataset, obtained from
the high-resolution LF dataset by Guo et al. [38], consists
of 26 LFs. Among these, 20 are allocated for training, while

TABLE 2
Parameters of the LF datasets.

Dataset Angular Res. Spatial Res.

POV-Syn. LFs [58] 1× 200 512× 512
Blender-Syn. LFs [59] 1× 128 512× 512
Real LFs [38] 1× 200 376× 512
Couch [60] 1× 101 628× 1024
Church [60] 1× 101 670× 1024
Bike [60] 1× 51 670× 1024
Statue [60] 1× 151 670× 1024

TABLE 3
The average PSNR and SSIM values of Fig. 6

10× Downsampling 15× Downsampling

Shearing 5 10 15 20 5 10 15 20times

PSNR↑ 34.02 38.65 40.56 40.83 31.43 31.96 38.55 39.79
SSIM↑ 0.895 0.940 0.962 0.965 0.814 0.919 0.948 0.949

PSNR:34.12

SSIM:0.893

PSNR:38.34

SSIM:0.954

PSNR:40.76

SSIM:0.965

PSNR:31.05

SSIM:0.821

PSNR:31.58

SSIM:0.903

PSNR:38.93

SSIM:0.951

(a) GT (b) Shear 5 times (c) Shear 10 times (d) Shear 15 times
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PSNR:39.07

SSIM:0.953

PSNR:40.81

SSIM:0.967

(e) Shear 20 times

Fig. 6. Reconstruction results under different numbers of shear oper-
ations and downsampling rates. The top row shows the reconstructed
views and EPIs under 10× downsampling, and the bottom row shows
the results under 15× downsampling. (a) GT. (b)-(e) show the results
corresponding to 5, 10, 15, and 20 shearing operations, respectively.

the remaining 6 are designated for testing. To illustrate the
relationship between views and EFS lines and explore the
impact of the number of shearing operations, we conduct
experiments using the first 200 views. Additionally, we
evaluate the proposed method’s performance on previously
unseen scenes captured by virtual camera array (generated
by the Blender software [59]) and a real camera array
(Disney [60]) to assess its generalization capabilities. Tab. 2
lists the parameters of all datasets. In the dense LFs, the
disparity between two adjacent views for most scenes is
less than one pixel, while in several scenarios, the disparity
reaches two pixels. Our training data includes EPI samples
obtained under different downsampling rates.

5.2 Ablation experiments
This section empirically validates the influences of the num-
ber of shear operations, the sampling rate on the recon-
structed EPI, and the effect of the phase modulation module
by performing the following ablation experiments.

Shearing operations analysis. In this experiment, we
use the synthetic ‘Pot’ LF scene consisting of 200 views
(POV-Synthetic LFs [58]) for testing. We conduct shearing
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(a) PSNR

40.89/0.951

(b) 10× Downsampling (c) 15× Downsampling (d) 20× Downsampling (e) 25× Downsampling

40.04/0.949 37.91/0.942 36.19/0.939

(b) SSIM

(a) GT

Fig. 7. Reconstructed views and error maps on the ’bicycle’ scene under different downsampling rates.
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Fig. 8. Quantitative comparisons (PSNR/SSIM) of each reconstructed
view on the ’bicycle’ scene under different downsampling rates. When
implementing k× downsampling, the required number of shearing oper-
ations is k − 1.

(a) GT
(c) Shear_EFS with

phase modulation

(b) Shear_EFS w/o

phase modulation

(a) PSNR

32.57/0.918 37.29/0.947

EPI

(b) SSIM

Fig. 9. Reconstructed views and EPIs of the ‘pot-cube’ scene with
or without the phase modulation module in the luminance channel.
(a) represents the GT image and EPI. (b) depicts the result without
phase modulation. (c) illustrates the result with phase modulation (15×
downsampling and 14 shearing operations).

operations different times (5, 10, 15, and 20), considering
downsampling levels of 10× and 15× respectively. Notably,
at a 15× downsampling rate, the maximum disparity be-
tween two adjacent views can reach up to 15 pixels.

As shown in Fig. 6(b), insufficient shearing operations re-
sult in reconstructed views exhibiting significant color aber-
ration due to the large loss in the EFS. Comparing Fig. 6(d)
and 6(e), it’s important to note that the improvement in
reconstruction performance may not always coincide with
an increase in the number of shearing operations. When the
number of shearing operations equals the downsampling
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Fig. 10. Quantitative evaluations (PSNR/SSIM) of the ‘pot-cube’ scene
with and without the phase modulation module at each view (15×
downsampling and 14 shearing operations).

rate (resulting in a disparity between adjacent views less
than ±1), further increasing the number of shearing opera-
tions has little effect on the reconstruction quality but esca-
lates the algorithm’s time complexity. Table 3 presents the
quantitative results of Fig. 6. As a result, in the subsequent
experiments, we perform k − 1 shearing operations when
dealing with k× downsampling.

Bound analysis. To evaluate the robustness of our
method, we conduct experiments under 10×, 15×, 20×,
and 25× downsampling settings on a ’bicycle’ real LF [38],
respectively. As shown in Fig. 7(b) and 7(c), for the 10× and
15× downsampling settings, the proposed method could
reconstruct the views with clear boundaries. Despite the
reduction in PSNR/SSIM values with 20× downsampling,
the reconstructed results continue to display noticeable oc-
cluded edges visually. At 25× downsampling, there is a
significant decrease in the quality of the reconstructed view
and the error map. Fig. 8(a) and 8(b) show quantitative
comparisons (PSNR/SSIM) of all revamped views under
different downsampling rates. Please note that the quasi-
periodic ’valleys’ shown in Fig. 8 result from imperfect
alignment during the capture of LFs [38].

The phase modulation analysis. Here we verify the ef-
fectiveness of the phase modulation depicted in Fig.5. Fig. 9
presents a quantitative comparison of view reconstruction
results on the ’pot-cube’ scene, showcasing the impact of
a phase modulation module versus without it (with 15×
downsampling and 14 shearing operations). Comparing
Fig. 9(b) and 9(c), we observe a significant increase in
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(a) GT (c) Max disparty = 40+px

(f) Max disparty =100+px(e) Max disparty = 80+px

(g) Max disparty = 120+px (h) Max disparty = 140+px

38.05/0.942

36.78/0.901 33.85/0.894

28.71/0.783 24.07/0.719

67

340

(b) Max disparty = 20+px

41.71/0.969

(d) Max disparty = 60+px

30.54/0.801

Fig. 11. Reconstruction results on the ‘statue’ scene [60] under different
disparity ranges (pixels, px). (a) GT. (b)-(f) represent the reconstructed
results with maximum disparities ranging from 20+px to 140+px, re-
spectively. As the ground truth depth is unavailable for real data captured
by the camera array, the labeled max disparity presented here is an
estimated value. The symbol + is appended to denote this estimation.

TABLE 4
Average PSNR and SSIM values on the ‘statue’ scene [60] under

varying disparity ranges.

Max disp. (px) 20+ 40+ 60+ 80+ 100+ 120+ 140+

PSNR 40.91 38.27 36.20 34.23 31.09 28.46 24.32
SSIM 0.964 0.952 0.921 0.904 0.859 0.775 0.712

reconstruction quality after adding the phase modulation
module. Specifically, as shown in the EPI, maintaining both
the luminance of reconstruction and the consistency across
views is challenging without the phase modulation module,
evident in the artifact in the red box of Fig. 9(b). Fig. 10
illustrates the quantitative evaluation curves depicting re-
construction results on the ’Pot-cube’ scene with and with-
out phase modulation at each view. The results indicate a
noticeable reduction in both PSNR and SSIM values for the
reconstructed views when the phase modulation module is
absent.

Maximum disparity. To assess the upper limit of dispar-
ity handling by our method, we downsampled the ‘statue’
scene of the Disney dataset [60] by factors from 10× to
70×. At this point, the maximum disparity ranged from
over 20 pixels to over 140 pixels (the input views are
also changed from 15 views to 3 views). Fig. 11 provides
reconstruction results on the ‘statue’ scene [60] under dif-
ferent disparity ranges. As depicted in Fig. 11, the quality
of view reconstruction decreases as the disparity increases.
At the disparity exceeding 100 pixels, image quality no-
ticeably deteriorates, characterized by increased artifacts.
However, as depicted by the EPI structures in Fig. 11 (b)-(f),
the proposed method exhibits the ability to maintain view
consistency to a considerable extent, even when confronted

TABLE 5
Average PSNR and SSIM values with different losses.

POV-Syn.
LFs [53]

Blend-Syn.
LFs [53]

Real LFs [38]

MAE 34.59/0.905 35.22/0.862 35.47/0.923
MAE+SSIM 35.81/0.934 37.38/0.874 35.98/0.941
MAE+SSIM+Percep. 38.27/0.972 40.67/0.918 38.21/0.972

with large disparities. Tab. 4 displays the average PSNR
and SSIM measurements on the ‘statue’ scene [60] across
various disparity ranges, demonstrating the robustness of
our method in different disparity scenarios.

The loss function in EPI refinement. Our loss function
of the EPI refinement U-Net consists of three parts: MAE
loss, SSIM loss, and Perceptual loss. To assess the impact of
these three terms on the experimental results, we conduct
separate training with different combinations of them. The
models are then tested on the POV-Syn. LFs [53], Blend-
Syn. LFs [53], and Real LFs [38] datasets, with 15× down-
sampling and 14 shearing operations. The combinations of
loss functions and test results are presented in Tab. 5. From
the last row of Tab. 5, it is evident that the perceptual loss
significantly enhances the reconstruction performance.

5.3 Comparisons with SOTAs

We compare our method against Wu 2019 [55], Wu 2021 [56],
LLFF [57], Guo 2023 [16] and EFS-without-shear [27]. Table
6 shows the average PSNR/SSIM/LPIPS [61] measurements
on both synthetic and real LFs. Qualitative comparisons
among different methods on several test scenes are shown
in Fig. 12, Fig. 14 and Fig. 16 respectively.

5.3.1 Real LFs captured with a plenoptic camera
We evaluate the proposed approach using real-world LF
datasets [38] under 15× downsampling, which contains
massive static scenes in the real world. Fig. 12 shows the
qualitative results on the ‘basket’ scene under 15× down-
sampling, and the scene contains several thin structures,
such as the basket handle. Note that, with a 15× down-
sampling rate, the number of shearing operations is 14.

In Fig. 12(b), ghosting artifacts are apparent around the
basket handle in the reconstruction result by Wu 2019 [55],
which are caused by the limited receptive field of their
network. Also, the Gaussian convolution kernel is only
effective for small disparities.Due to the reconstruction net-
work in Wu 2021 [56] generating multiple “plausible” re-
sults using different shear amounts, ambiguity arises when
these outputs are fed into the subsequent fusion net. This
ambiguity results in the failure to reconstruct regions with
thin and repetitive patterns, as observed in the green box
of Fig. 12(c). The MPI-based LLFF [57] tends to assign
high opacity to incorrect layers in areas with ambiguous
or repetitive textures, or in regions with moving content be-
tween input images. This behavior causes floating or blurred
patches around repeating slender structures, as evident in
the green box of Fig. 12(d). As the method of Guo 2023
[16] requires additional optical flow estimation, errors in
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(a) GT (d) LLFF (f) EFS w/o shearing (g) EFS with shearing

(b) SSIM

(b) Wu 2019 (c) Wu 2021

(a) PSNR

38.71/0.98037.46/0.97235.15/0.968 38.81/0.98636.20/0.955

(e) Guo 2023

EFS 

36.79/0.957

Fig. 12. Comparisons of reconstruction results on the ‘basket’ scene (15× downsampling). The results consist of one reconstructed view, the error
map, and the EPI of the reconstructed LF by different methods. Zooming in for better visualization. From left to right: (a) GT, the results by (b) Wu
2019 [55], (c) Wu 2021 [56], (d) LLFF [57], (e) Guo 2023 [16], (f) EFS w/o shearing [27], and (g) our method (EFS with shearing).

TABLE 6
Quantitative comparisons with SOTAs under different downsampling rates on both synthetic and real-world LFs.

POV-Syn.
LFs [53]

Blend-Syn.
LFs [53]

Real LFs
[38]

Couch [60] Church [60] Bike [60] Statue [60]

Downsampling 15× 15× 15× 10× 10× 5× 10×

Shearing
times

14 14 14 9 9 4 9

Wu 2019 [55]
PSNR↑ 34.77 36.09 34.92 32.01 32.64 31.13 32.63
SSIM↑ 0.813 0.799 0.825 0.724 0.721 0.708 0.698
LPIPS↓ 0.093 0.064 0.078 0.113 0.08 0.110 0.098

Wu 2021 [56]
PSNR↑ 37.83 38.13 37.48 34.69 32.78 32.29 34.96
SSIM↑ 0.957 0.911 0.931 0.745 0.895 0.81 0.895
LPIPS↓ 0.059 0.036 0.065 0.109 0.045 0.079 0.052

LLFF [57]
PSNR↑ 36.46 39.42 37.02 37.25 38.85 35.51 38.53
SSIM↑ 0.922 0.898 0.925 0.916 0.962 0.875 0.956
LPIPS↓ 0.089 0.038 0.079 0.084 0.051 0.082 0.049

Guo 2023 [16]
PSNR↑ 36.37 37.22 35.41 34.02 36.78 35.63 34.05
SSIM↑ 0.904 0.887 0.866 0.851 0.803 0.825 0.762
LPIPS↓ 0.084 0.045 0.075 0.083 0.079 0.091 0.073

EFS w/o shearing [27]
PSNR↑ 37.45 37.67 37.74 43.05 37.95 36.77 40.82
SSIM↑ 0.952 0.903 0.938 0.928 0.964 0.939 0.959
LPIPS↓ 0.088 0.046 0.072 0.079 0.06 0.085 0.041

Ours
PSNR↑ 38.27 40.67 38.21 44.51 43.45 38.53 40.91
SSIM↑ 0.972 0.918 0.972 0.935 0.977 0.951 0.964
LPIPS↓ 0.047 0.042 0.058 0.061 0.031 0.063 0.032
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Fig. 13. PSNR and SSIM measurements for each reconstructed view on
the ‘basket’ scene (15× downsampling and 14 shearing operations).

this estimation process may affect view consistency. This
impact is noticeable in areas such as the green box and
EPI of Fig. 12(e). Fig. 12(f) shows the result of EFS w/o
shearing [27], where the absence of shearing operations
before spectrum reconstruction results in spectral energy

loss, leading to color aberration in the reconstructed views.
In comparison, the proposed shear-EFS-based reconstruc-
tion method yields clearer boundaries under repetitive tex-
tures and reduces color distortion (as shown in Fig. 12(g)).
Fig. 13(a) and 13(b) show the PSNR and SSIM measurements
for each reconstructed view on the ‘basket’ scene under
15× downsampling. Overall, our method outperforms the
SOTAs. The 5th column of Table 6 showcases quantitative
comparisons, including PSNR, SSIM, and LPIPS, further
affirming the superiority of the proposed method.

5.3.2 Synthetic LF datasets generated by Blender
We also evaluate the proposed approach using our Blender
synthetic LF datasets under 15× downsampling (the num-
ber of shearing operations is 14), which are with larger
disparities (the maximum disparity is up to 15px).

The qualitative results on two synthetic LFs under 15×
downsampling are shown in Fig. 14. We can see that severe
ghosting artifacts occur in the results by Wu 2019 [55],
and the reconstructed views are inconsistent (see the EPI
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(a) GT (b) Wu 2019 (c) Wu 2021 (d) LLFF (f) EFS w/o shearing (g) EFS with shearing

(a) PSNR/SSIM of  'living-room' scene
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(b) PSNR/SSIM of  'Washbasin' scene

(e) Guo 2023

37.53/0.894

37.29/0.910

Fig. 14. Qualitative comparisons of reconstructed views on the ‘living-room’ and ‘washbasin’ scenes (15× downsampling). The results consisi of
one reconstructed view and corresponding EPI by different methods. Zooming in for better visualization. From left to right: (a) GT, the results by (b)
Wu 2019 [55], (c) Wu 2021 [56], (d) LLFF [57], (e) Guo 2023 [16], (f) EFS w/o shearing [27] and (g) our method (EFS with shearing).
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(b) PSNR/SSIM of the ‘washbasin’ scene
Fig. 15. PSNR and SSIM measurements for each reconstructed view
on the (a) ‘living-room’ and (b) ‘washbasin’ scenes (15× downsampling
and 14 shearing operations).

of Fig. 14(b)). Similarly, a fuzzy phenomenon appears in
the results by LLFF [57] on the desk lamp and the edge
of the sink (the red box of Fig. 14(d)). Wu 2021 [56] cannot
maintain the disparity consistency well in the case of slender
structures and larger disparities (see the yellow box on
EPI in Fig. 14(c)). Optical flow estimation errors result in
incorrect warping, leading to erroneous reconstruction at
the edges of objects in Guo 2023 method [16] (refer to the
enlarged red boxes in Figure 14(e)). Even through the EFS-
without-shearing method [27] reconstructs the dense LF in
the frequency domain, it still suffers from color aberration
caused by spectral energy errors (see Fig. 14(f)). Our method
not only exhibits reduced sensitivity to spatial contents
but also integrates an occlusion awareness module within
the network, enabling the production of high-quality and
view-consistent reconstructions (see Fig. 14(g)). As shown
in Fig. 15, the PSNR/SSIM measurements for each recon-
structed view achieved by our method are higher compared
to the SOTA methods.

5.3.3 Real-world LFs captured with a camera array

To verify the effectiveness of our method under a wide
baseline, we further evaluate the proposed approach using
the Disney LFs [60], which are captured by a camera array.

Fig. 16 shows the results on Church LFs [60] (15× down-
sampling and 14 shearing operations) with wide baselines
and complex occlusions (with a maximum disparity of up to
20px). Due to the limited receptive field of the network, the
reconstructed view by Wu 2019 [55] exhibits serious artifacts
(see Fig. 16(b)). In Wu 2021 [56], the EPI is sheared using
different disparities. However, the shear operation might in-
troduce errors, particularly under large disparities, resulting
in a loss of view consistency in the reconstructed results (see
the red box and EPI of Fig. 16(c)). LLFF [57] requires sub-
stantial memory to build MPI, creating a trade-off between
image resolution and the layers of MPIs employed. This
trade-off leads to performance degradation, especially in
high-resolution input areas with large disparities, as shown
in the zoomed-in rectangles and EPI in Fig. 16(d). We retrain
the Guo 2023 method [16] using our datasets, however,
it continues to face challenges in reconstructing views at
arbitrary positions within light field datasets. Notably, in
scenarios with large parallax, significant content inconsis-
tencies emerge across views (refer to the EPI in Figure 16(e)).
Additionally, errors in optical flow estimation during the
preprocessing stage of the Guo 2023 method [16] have hin-
dered the accurate reconstruction of fine, elongated texture
structures within the scene, leading to noticeable errors in
depicting the electric wire, as evident in Fig. 16(e). Due to
the loss of spectral energy caused by large disparities, the
reconstructed view of EFS w/o shearing [27] also exhibits
color aberration. In contrast, our proposed method demon-
strates superior performance under large disparities and
exhibits better view consistency compared to other meth-
ods. This is attributed to the EFS’s shearing operation and
occlusion analysis incorporated within our method. Fig. 17
shows the quantitative comparison curves (PSNR/SSIM) of
each reconstructed viewpoint on the ‘church’ scene (10×
downsampling), in which we find the quantitative compar-
ison curve of our method is significantly higher than the
SOTA methods. Quantitative results on four Disney LFs are
listed in the rightmost four columns of Table 6.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3337516

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on December 01,2023 at 03:41:04 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

(a) PSNR
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(f) EFS w/o shearing (g) EFS with shearing

(b) Wu 2019 (c) Wu 2021

(e) Guo 2023

36.97/0.864

(b) SSIM

Fig. 16. Comparisons of reconstruction results on the camera array LF dataset (10× downsampling). The results consist of one reconstructed view
and corresponding EPI by different methods. Several local areas are zoomed in for better visualization. (a) GT, the results by (b) Wu 2019 [55], (c)
Wu 2021 [56], (d) LLFF [57], (e) Guo 2023 [16], (f) EFS w/o shearing [27] and (g) our method (EFS with shearing).
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Fig. 17. PSNR and SSIM measurements for each reconstructed view
on the camera array LF dataset (10× downsampling and 9 shearing
operations).

5.3.4 Minimum number of input views in 4D light fields
To analyze the proposed method’s requirements regarding
the number of input views and its feasibility for 4D LF
reconstruction, Fig. 18 demonstrates the results for recon-
structing a 4D LF with 9×9 views from an initial input of
2×2 views. We follow the strategy of ‘horizontal first, vertical
second’ [27] for reconstructing the 4D LF.

The construction of EFS through spatial refocusing im-
plies that the proposed shear-EFS-based method remains
viable even with a limited number of input views, as long
as refocusing can be executed (using at least two views). In
Fig. 18, a significant disparity variation is evident in the fore-
ground area, particularly in the origami crane. Compared to
other SOTAs, our approach can still achieve superior recon-
struction results in regions with such significant disparity
variations (as observed in the zoom-in box of Fig. 18). Fig.
18(f) and (g) depict the PSNR and SSIM values for recon-
structed views using different methods. It’s evident that our
method provides higher PSNR/SSIM values compared to
the other methods.

5.4 Limitations
The theoretical analysis in this paper is based on the Lam-
bertian assumption, which posits consistent textures for
the same spatial point under different views, resulting in
straight EPI lines within the scene. However, when non-
Lambertian materials are present in the scene and their

surfaces are rough, the EPI lines are no longer straight.
Consequently, the focal stack constructed using Eq. 1 and
its corresponding EFS will not exhibit the central symmetric
structure depicted in Fig. 1. Therefore, our method encoun-
ters challenges when dealing with non-Lambertian scenes
exhibiting such characteristics.

Fig. 19 illustrates the focal stack construction and EPI
reconstruction results using our method in two distinct
non-Lambertian scenes. In Fig. 19(a), we observe a non-
Lambertian scene with curved objects. Specifically, the sur-
face of the ceramic plate is uneven, leading to inconsistent
textures reflected on the plate surface from different views
(left). This inconsistency disrupts the linearity of the EPI
line at the green line position (top right). The focal stack,
constructed from this 15× downsampled EPI (middle right),
and its corresponding EFS no longer exhibit the character-
istics as described in [26], [27] (refer to the yellow box in
Fig. 19(a)). Consequently, the shearing operation, as detailed
in Sec. 3.3, becomes inapplicable. In such a scenario, our
method results in errors in both the structural and color
aspects of the reconstructed EPI (bottom right).

Fig. 19(b) portrays a non-Lambertian scene featuring
smooth surfaces. Specifically, within the center of this scene,
two mirrors are present, both with smooth surfaces. Conse-
quently, the textures reflected on the mirror surfaces from
different views remain consistent (left), resulting in the EPI
line at the green line position forming a continuous straight
line (top right). The focal stack constructed from this 15×
downsampled EPI (middle right) and its corresponding EFS
exhibit the characteristics as described in [26], [27] and are
in alignment with our method. Consequently, the recon-
structed EPI maintains its structural characteristics (bottom
right).

Although the proposed method outperforms the SOTA
methods in both view reconstruction quality and cross-
view consistency preservation, the shearing operation may
incur extra time costs. This problem can be mitigated by
embedding shearing operations into the network [56]. Fur-
thermore, the proposed method, relying on 2D EPI, lacks
an explicit constraint for consistency from row to row in
sub-aperture images, as depicted in the zoomed-in boxes in
Fig. 20. A potential solution could involve utilizing 3D EFS
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(a) GT (d) LLFF (e) Ours(b) Wu 2019 (c) Wu 2021

33.96/0.769 36.80/0.866 34.08/0.801 38.38/0.917

(f) PSNR

(g) SSIM

Fig. 18. Comparisons of reconstruction results on the 4D Origami LF [62] (from 2×2 to 9×9 views). The results include one reconstructed view
and its corresponding error map compared against the ground truth, generated by different methods. Several local areas are zoomed in for better
visualization. (a) GT, the results by (b) Wu 2019 [55], (c) Wu 2021 [56], (d) LLFF [57] and (e) our method. (f) and (g) provide the PSNR and SSIM
values for 9×9 reconstructed views using different methods, respectively.
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Reconstructed EPI Central image (GT)
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 Focal satck 

(15×  downsampling)

Reconstructed EPI

(a) Specular reflection of curved objects (b) Specular reflection of flat objects

Fig. 19. Focal stack construction and EPI reconstruction results using our method in two distinct non-Lambertian scenes, depicted in (a) for scenes
with curved objects1, and in (b) for scenes featuring smooth objects.

(a) GT

(b)  Reconstruction result

(c) Zoomed-in error map

(b)  Zoomed-in ours

(a)  GT

Fig. 20. An example of inconsistency across rows. (a) is the GT image.
(b) is a zoomed-in version generated by our method. (c) is the zoomed-in
error map. Notably, stripe-like differences can be observed across rows
when comparing these images to the GT image. The scene is sourced
from the dataset [63].

within the f -x-y space.

6 CONCLUSIONS

Based on the Fourier affine and convolution theorems,
we analyze the relationship between the EFSs of sparse

1. The central red line seen in the GT EPI is derived from the authors’
released images [57]. We omit this view during the downsampling
process, resulting in the absence of the red line in the reconstructed
EPI.

and dense LFs and make a formal breakdown of the EFS
on a sparsely sampled EFS. We also analyze the occlu-
sion in the focal stack and the EFS shearing operation
and provide the occlusion model. Based on the theoretical
analysis, we design a specially phase-modulated ODU-Net
for reconstructing a dense LF from an undersampled LF.
The proposed method exhibits superior performance under
challenging conditions, such as significant disparities and
complex occlusions, and maintains cross-view consistency.
Experimental results have verified that the shearing strategy
not only improves the accuracy of EFS completion but also
reduces the complexity of network learning.
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