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Abstract

In this paper, we address the problem of spatially-varying illumination-aware indoor harmonization.
Existing image harmonization works either focus on extracting no more than 2D information (e.g.,
low-level statistics or image filters) from the background image or rely on the non-linear representa-
tions of deep neural networks to adjust the foreground appearance. However, from a physical point of
view, realistic image harmonization requires the perception of illumination at the foreground position
in the scene (i.e., Spatially-Varying (SV) illumination), especially for indoor scenes. To solve indoor
harmonization, we present a novel learning-based framework, which attempts to mimic the physical
model of image formation. The proposed framework consists of a new neural harmonization archi-
tecture with four compact neural modules, which jointly learn SV illumination, shading, albedo, and
rendering. In particular, a multilayer perceptron-based neural illumination field is designed to recover
the illumination with finer details. Besides, we construct the first large-scale synthetic indoor harmo-
nization benchmark dataset in which the foreground focuses on humans and is rendered and perturbed
by SV illuminations. An object placement formula is also derived to ensure that the foreground object
is placed in the background at a reasonable size. Extensive experiments on synthetic and real data
demonstrate that our proposed approach achieves better results than prior works.
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1 Introduction

Image harmonization aims at adjusting the
appearance of the foreground image so that it is
perfectly merged into the environment of the back-
ground image. However, some existing image har-
monization methods only extract no more than 2D
information (such as image filters [1, 2], low-level
statistics [3, 4], or semantics [5, 6]) from the back-
ground image. As shown in Fig. 1(c), this kind of
information can only be used to adjust foreground
brightness and color, not shading. The other meth-
ods [7–11] rely on the non-linear representations

of deep neural networks to adjust the foreground
appearance. However, since they do not explic-
itly consider certain factors such as shading and
illumination, their models provide limited repre-
sentations for indoor scenes with spatially-varying
illumination. This causes these methods to some-
times produce wrong results that do not match the
illumination distribution of the background in 3D
space, such as transferring the irrelevant illumi-
nant in the background to the foreground. In fact,
from the perspective of physical image formation
[12], illumination is the crucial factor that affects
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Fig. 1 Different from the directional light in outdoor
scenes (i.e., the sun), the illumination in indoor scenes is
spatially varying (a). As a result, the appearance of the
foreground object at different locations may be different
(b). However, some existing image harmonization works
only extract no more than 2D information (e.g., image
filters [1, 2] and low-level statistics [3, 4]) from the back-
ground image, which greatly reduces the realism of the
indoor composite image (c). In contrast, our proposed har-
monization framework can not only produce more accurate
shading results consistent with the background illumina-
tions, but also effectively remove the original illumination
effects (d). Here P1 and P2 refer to different foreground
placement locations.

the foreground’s brightness, color, and shading.
Thus background illumination should be perceived
if we want the foreground to blend seamlessly into
the background image.

Recently, Bao et al. [13] first proposed to
extract background illumination to adjust the
foreground appearance. But they assume that
the illumination is directional, which only applies
to outdoor scenes. As shown in Fig. 1(a), the
spatially-varying illumination of indoor scenes
poses a greater challenge to existing image har-
monization works. Therefore, the goal of this
paper is to solve the problem of spatially-varying
illumination-aware indoor harmonization.

Before addressing indoor harmonization, the
first obstacle we face is the lack of a large-
scale dataset for indoor harmonization. In existing
large-scale image harmonization datasets (e.g.,
iHarmony4 [7], IH [13], and HLIP [6]), either
the foreground perturbation only contains bright-
ness and color variations [6, 7], or the illumina-
tion is assumed to be directional [13]. A dataset

containing both foreground illumination pertur-
bations and spatially-varying illumination does
not yet exist. In this work, we construct the
first large-scale synthetic indoor harmonization
dataset where the foreground focuses on humans
and is perturbed and rendered by spatially varying
illuminations. In dataset construction, an object
placement formula is derived so that the size of
the foreground object changes with the placement
position, in order to comply with the principle of
“near and big, far and small in space”. In addition,
our carefully collected illumination maps and 3D
models are both reconstructed from the real world
in order to achieve photo-realistic renderings.

To solve indoor harmonization, in this paper,
we propose a novel physically-inspired, learning-
based framework. Specifically, it is composed of
four compact neural modules to simulate the
process of physical image formation, namely an
illumination estimation module, a shading mod-
ule, an albedo estimation module, and a rendering
module. In particular, the albedo estimation mod-
ule is carefully designed to be connected to the
rendering module by physically-meaningful deep
features rather than the albedo itself, which effec-
tively avoids the accumulated error caused by
inaccurate estimation of albedo. Our experiments
show that this module can effectively remove
the effects of original illumination. In addition,
unlike the existing illumination estimation meth-
ods based on parametric representation [14–17],
we introduce a neural illumination field into the
illumination estimation module. The Neural Illu-
mination Field (NIF) is designed as a Multi-Layer
Perceptron (MLP) with Fourier features-based
position encoding. By introducing a large num-
ber of Fourier features, our NIF is able to more
accurately characterize illumination with the same
number of parameters compared to [17]. More
importantly, the NIF-based illumination estima-
tion module enables our entire image harmo-
nization framework to achieve spatially-varying
illumination-aware indoor harmonization in 3D
space.

Extensive experiments on this large-scale
benchmark dataset demonstrate that our pro-
posed method outperforms three state-of-the-art
methods in terms of brightness, color, and shad-
ing. In addition, we carefully collect and con-
struct a small indoor harmonization evaluation
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dataset of real composite images where the fore-
ground is placed in multiple positions. A user
study of five state-of-the-art methods and our pro-
posed method on this evaluation dataset shows
that our results are not only visually pleasing
but also, more importantly, consistent with the
background illumination distribution in 3D space.
Finally, experiments on the HVIDIT dataset [18]
also demonstrate that not only can our frame-
work be extended to general object types, but the
use of illumination information helps improve the
harmonization performance.

In summary, our main contributions are as
follows:

1. We construct a large-scale synthetic indoor
harmonization benchmark dataset, in which
the foreground is perturbed and rendered by
spatially varying illuminations. In dataset con-
struction, we also derive an object placement
formula to make the foreground object match
the background at a reasonable size. To the
best of our knowledge, this is the first image
harmonization dataset to include the spatially-
varying illumination property.

2. We propose a novel physically-inspired,
learning-based framework for spatially-varying
illumination-aware indoor harmonization, the
core of which is an illumination estimation
module equipped with an MLP-based NIF with
Fourier features-based positional encoding to
recover the illumination accurately.

3. Our proposed framework achieves state-of-the-
art performance on both the indoor harmoniza-
tion benchmark and HVIDIT. A user study on
real composite images is also conducted to ver-
ify the superiority of our framework, especially
in dealing with spatially-varying harmoniza-
tion.

2 Related Work

In this section, we briefly review image harmo-
nization works. We also discuss illumination esti-
mation, intrinsic image decomposition, and image
relighting works related to this paper.

2.1 Image Harmonization

For image harmonization, we divide it into
statistic-based methods and learning-based meth-
ods. Below, we will discuss them separately.

Statistic-based methods: The early image
harmonization works [3, 4, 19–25] mainly concen-
trated on matching low-level statistics consistency
between different images, such as mean and vari-
ance [3], contrast and noise [24]. In particular, Xue
et al. [25] identified key statistics that influence
the realism of composite images through human
visual perception experiments. Lalonde and Efros
[4] used global color statistics that are calcu-
lated on a large real image dataset to improve
the realism of composite images. However, in
terms of photo-realism, the results of matching the
hand-crafted statistics are far from satisfactory.

Learning-based methods: Deep learning
has recently achieved state-of-the-art results on
a lot of computer vision tasks, including image
harmonization. Tsai et al. [5] proposed the first
end-to-end neural network for image harmoniza-
tion. These learning-based methods usually for-
mulate image harmonization as an image-to-image
translation task while ensuring visual consistency
in different aspects, such as semantics consistency
[5, 6, 26], style consistency [27, 28], domain con-
sistency [7, 29, 30], appearance consistency [10],
and reflectance consistency [18]. It is worth noting
that a learning-based illumination harmonization
framework is proposed to ensure illumination con-
sistency by Bao et al. [13], but they just assume
that the illumination is directional, which only
works for outdoor scenes. In addition, some latest
deep learning techniques, such as attention mech-
anisms [8, 31] or Transformer [11, 32, 33], have
also been exploited to boost the performance of
image harmonization. High-resolution image har-
monization [2, 9, 34, 35] are also considered. More
recently, Xue et al. [2] and Ke et al. [1] simul-
taneously integrated comprehensible image filters
into the learning framework, which facilitates user
editing. Valanarasu et al. [36] proposed an interac-
tive portrait harmonization method. Xu et al. [37]
performed color harmonization in an intermedi-
ate high dynamic range color space instead of the
standard color space to correct color discrepancy
effectively. However, none of these methods take
into account spatially-varying illumination-aware
indoor harmonization, nor even alter the fore-
ground shadings except for [13, 38]. In contrast,
in this paper, we propose a physically-inspired
learning framework to solve the problem of indoor
harmonization.
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2.2 Illumination Estimation

Early illumination estimation works [16, 39–43]
usually estimate a single, global scene illumi-
nation from a limited field-of-view image. How-
ever, a single global illumination does not take
into account the spatially-varying lighting effects,
which may result in unrealistic renderings, espe-
cially for indoor scenes. Recently, a growing num-
ber of works [15, 17, 44–48] have focused on
spatially-varying illumination estimation. Garon
et al. [15] first proposed a two-stream global and
local neural network to estimate a spherical har-
monics illumination for each local image patch.
Li et al. [17] proposed to use spherical Gaus-
sians rather than spherical harmonics to better
recover high-frequency lighting effects. They also
proposed to estimate parametric models of both
visible and invisible light sources for editing indoor
scene lighting [48]. In addition, 3D volumetric rep-
resentations [44, 45] are also used to represent
spatially-varying illuminations, but accompanied
by a high computational cost. Recently, neural
fields have shown great success in the field of
view synthesis and extended to many other fields
[49, 50]. In this work, we propose a novel neu-
ral fields-based illumination estimation module to
reconstruct the illumination with finer details.

2.3 Intrinsic Image Decomposition

Intrinsic Image Decomposition (IID) [51, 52] is the
task that aims to decompose a single image into
an albedo image and a shading image from the
perspective of physical image formation. Similarly,
our framework is also inspired by the physical
image formation and incorporates shading and
albedo estimation for better harmonizing images.
However, compared to these IID works [53–57]
where albedo and shading must be explicitly esti-
mated, we can estimate them implicitly during
the inference phase. Therefore, we have more free-
dom in the design of network architecture. For
example, instead of running the entire albedo
estimation module to estimate the final albedo,
we only need to obtain the intermediate albedo
feature as input to the rendering module. In addi-
tion, IID works focus on decoupling the shading
from the image, but our goal is to render a new
shading of the foreground image with the esti-
mated background illumination. The closest work

to ours is [58], where they proposed a global-local
spherical harmonics lighting model to improve
the results of IID. However, as discussed in Sec.
2.2, spherical harmonics lighting often loses some
high-frequency details.

2.4 Image Relighting

Early image relighting works [59–61] focus on cap-
turing multiple images under different illumina-
tion conditions to reconstruct the light transport
function for relighting the objects. Note that the
target illumination here is given directly without
estimating it when relighting. Recently, several
deep relighting networks [62–66] with illumina-
tion estimation have been proposed to relight
portraits or human bodies only using a single
RGB image. However, illumination estimation
only targets portraits or human bodies rather
than complex natural scenes. In other words, these
relighting methods are not specifically designed for
image harmonization and can not be applied to it
directly. More importantly, they lack the ability
to perceive spatially varying illumination, which
is the core topic of this paper.

3 Dataset Construction

In this section, we introduce a novel large-scale
synthetic indoor harmonization dataset in which
the foreground is rendered and perturbed by
spatially-varying illumination. Below we describe
the dataset construction process in detail, which
covers data collection, spatially-varying illumina-
tion generation, background rendering, foreground
rendering, and object placement.

3.1 Data Collection

To construct our dataset, we collect High Dynamic
Range (HDR) illumination maps with depth anno-
tations, high-quality 3D interior models, and 3D
human models. Specifically, the Laval Indoor HDR
dataset [39] and the Replica dataset [67] are col-
lected to generate SV HDR illumination maps.
They cover various types of indoor scenes, such
as shopping malls, bedrooms, offices, and corri-
dors. We also collect a total of 135 high-quality
3D human models from 3D People [68], of which
117 are used for training and 18 for testing. A
rich variety of humans are included, with diver-
sity across genders (male, female), ages, poses,
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and clothing (colors, accessories). Note that both
the Replica dataset and the 3D human models
are reconstructed from the real world to achieve
photo-realistic renderings.

3.2 Spatially-varying Illumination
Generation

The spatially-varying illumination maps are gen-
erated from the Laval Indoor HDR dataset and
the Replica dataset. The overall generation pro-
cess is shown in Fig. 2. For the Laval Indoor
HDR dataset, we first filtered the HDR illumina-
tion maps with no depth annotations, inaccurate
geometries, or low brightness, resulting in the
remaining 65 illumination maps. In particular,
for filtering geometries, we first transformed each
illumination map into a point cloud based on
its depth, and then visualized it one by one in
MeshLab software [69] to determine whether the
geometry reflected in the scene content is consis-
tent with the annotated geometry. For example,
we removed those geometries whose surfaces have
depth variations but were mis-annotated as flat
surfaces. 42 are randomly selected for training and
23 for testing. For each illumination map, we then
manually annotated the planar surface within the
illumination map to ensure the foreground object
was in a suitable location. Specifically, we used
Labelme software [70] to label the floor in the illu-
mination map. We further transform the illumi-
nation map and its depth into the corresponding
point cloud. Specifically, for an illumination map
with a resolution of H × W , assuming that the
coordinates of a certain pixel are (u, v), its cor-
responding longitude and latitude coordinates are
(a, b) = (2uπ/(W−1),−0.5π+vπ/(H−1)). Given
its depth d, the spatial coordinates [x, y, z]T can
be calculated as follows: x

y
z

 = d

 cos a cos b
sin a cos b
− sin b

 . (1)

Finally, given a target pixel sampled from the
annotated planar surface, the point cloud is trans-
lated and projected into the target illumination
map via the Z-buffering algorithm [71].

For the Replicate dataset, we first manually
selected the camera placement locations using
MeshLab software. Then, for each location, a

Fig. 2 The process of spatially-varying illumination gen-
eration from the Laval Indoor HDR dataset and Replica
dataset. P1 and P2 represent the locations where illumi-
nation maps are to be rendered. P3 and P4 represent the
locations where panoramic cameras are placed.

panoramic camera is placed to render an HDR
illumination map and its depth map using the
Habitat-Sim platform [72]. We further filtered the
illumination maps with large black holes caused
by missing textures. A total of 720 illumination
maps are retained, 561 for training and 159 for
testing. Note that the illumination maps in the
same scene are either all for training or all for
testing. Finally, the object placement locations are
directly based on the camera placement locations.
But we removed those locations where foreground
objects could not be placed due to occlusion, too
small space, or being close to the black hole.

3.3 Background Rendering

As shown in Fig. 3, the background image is
cropped from the illumination map using a virtual
perspective camera with a resolution of 640× 480
pixels. In addition, for each background image
from the Replica dataset, we also render per-pixel
illuminations with a resolution of 16× 32 pixels.

3.4 Foreground Rendering

For each pair of the illumination map and 3D
model, we use Blender [73] with the Cycle Ren-
derer to render the foreground image along with
its foreground mask, shading, and albedo as shown
in Fig. 4. Each image is rendered with a resolution
of 640× 480 pixels. Samplings Per Pixel (SPP) is
set to around 200∼400. To increase the richness of
object poses, each object is rotated at one angle
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Fig. 3 The background image is cropped from the illumi-
nation map, and per-pixel illuminations are rendered only
from the Replica dataset.

that is randomly sampled from a pre-defined set
of 8 angles, ranging from 0 to 360 degrees with an
increment of 45 degrees.

Fig. 4 For each pair of the illumination map and 3D
scan model, a quad-tuple (i.e., image, shading, albedo, and
mask) is rendered.

3.5 Object Placement

Once the foreground image is rendered, we place
it in the background image. To match the back-
ground image size, as shown in Fig. 5, a foreground
image scale factor s is inferred,

tanβ =
Hb/2−Hp

Hb/2
· tan (α/2) , (2)

s =
Hp

Hf
· ho tanβ tan (π/2− α/2)

hc (1− tanβ tan (π/2− α/2))
, (3)

where α and hc denote the Vertical Field of View
(VFOV) and the height of the camera, respec-
tively. ho is the foreground object height, and Hp

is the vertical pixel distance from the placement
pixel p to the bottom of the background image.
Hb is the background image height, and Hf is the
original foreground image height. Note that the
image plane here is perpendicular to the ground.
See supplementary material for a more general

formula with camera pitch angle and object sup-
port height. The scale factor S is then used to
resize the foreground image and its mask. Finally,
the composite image is obtained by alpha-blending
the resized foreground image and the background
image.




oh
chpH

bH

Obj Cam

0.28s 

0.46s 

0.57s 

p

Fig. 5 The estimate of S in foreground object placement.
Given the different placement positions of the foreground
object, the corresponding scales are inferred to match the
geometry of the background.

The above procedure is used to create both
unharmonious and harmonious composite images.
But the foreground of the unharmonious com-
posite image is rendered by a randomly selected
illumination. In addition, to increase the diver-
sity of the constructed dataset, the outdoor HDR
illumination maps, collected from Poly Haven [74]
and HDR MAPS [75], are also used to render
the foreground image but only for the unhar-
monious composite image. In Fig. 6, we show
some high-quality examples from our constructed
dataset.

Data source Laval Replica Total

#Train 16,141 55,944 72,085
#Test 2192 4,570 6,762

Table 1 The number of training and test images on each
data source.

In summary, we produce a total of 78,847
images, 72,085 for training, and 6,762 for testing.
In Tab. 1, we also show the statistics on each data
source in detail.
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Fig. 6 High-quality examples from our constructed large-
scale image harmonization dataset. Note that the fore-
ground is rendered and perturbed by spatially varying
illumination. Compared to the widely used iHarmony4
dataset [7], our challenging setting is in line with real-world
image harmonization.

4 Method

4.1 Problem Formulation

Unlike existing image harmonization methods [7,
27, 28] that directly map an unharmonious image
to a harmonious one, we seek to incorporate the
physical principles of image formation into our
method to improve the realism of the composite
image. The rendering equation [12], which consists
of several input physical terms, is often used to
simulate the physical process of image formation
in the real world. However, it is hardly possi-
ble to directly use this equation to render a new
foreground image because we cannot accurately
estimate all input physical terms from limited
observations (i.e., a foreground image, a back-
ground image, and a foreground mask), which is
a severely ill-posed problem.

Although not all physical terms can be or need
to be estimated, we believe that the three phys-
ical terms are essential for image harmonization:
illumination, shading, and albedo. First, the ren-
dering equation indicates that illumination is the

only variable that makes the same object look dif-
ferent. Moreover, our experiment also shows that
the performance improvement of image harmo-
nization also benefits from the use of illumination
information. Therefore, illumination estimation
is performed to ensure illumination consistency
between the foreground and the background. In
addition, Bao et al. [13] also proposed to adjust the
foreground appearance by perceiving the illumi-
nation of the background scene. However, on one
hand, they mainly target outdoor scenes and do
not involve spatially-varying illumination estima-
tion; on the other hand, the spherical harmonics
they used clearly have limited ability to represent
high-frequency details [17]. Second, how to make
good use of the estimated illumination is equally
important for indoor harmonization. Because, for
the goal of image harmonization, what we ulti-
mately need is the adjusted foreground appear-
ance, and the illumination is only the cause of
appearance changes, not the appearance itself.
From the perspective of physical rendering, the
foreground appearance adjustment requires both
removing the original illumination of the fore-
ground and rendering the new illumination effects
in the foreground during the image harmonization
process. Considering the complexity of this harmo-
nization process, we therefore break it down into
two simpler parts: re-shading and albedo estima-
tion. For re-shading, it requires rendering a new
shading from two inputs: the background illumi-
nation and the input foreground image with the
original illumination. Compared to directly ren-
dering the final appearance, re-shading is more
conducive to rendering since it does not involve
foreground textures. For albedo estimation, it is
introduced with the aim of removing the effects
of the original illumination. Finally, an albedo
image that removes the original illumination and a
shading image under the background illumination,
which correspond to different components of the
harmonized foreground appearance, are combined
to finish the image harmonization process.

As a result, in this paper, we propose to explic-
itly estimate the three key physical terms (i.e.,
illumination, shading, and albedo), and formulate
image harmonization in a physically meaningful
form:

L̂M = f (Ib,M) , Â = g
(
Ĩf

)
, (4)
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Fig. 7 An overview of the proposed framework for indoor harmonization. Inspired by the physical principle of image
formation, it consists of four neural modules, which jointly learn SV illumination, shading, albedo, and rendering.

Ŝ = h
(
Ĩf , L̂M

)
, Îf = r

(
Â, Ŝ

)
, (5)

where f is an illumination estimation function
that takes a background image Ib and a foreground
mask M as input, g is an albedo estimation func-
tion whose input is an unharmonious foreground
image Ĩf , h is a shading function whose input is

{L̂M , Ĩf}, and r is a rendering function that takes

the estimated albedo Â and shading Ŝ as input
and outputs the harmonized foreground image Îf .

The subscript M of L̂M indicates that illumina-
tion L is located in the foreground region M . We
model all these functions {f, g, h, r} using neural
networks. The details of the network architecture
are described in Sec. 4.2.

4.2 Network Architecture

The overview of our proposed image harmoniza-
tion network architecture is shown in Fig. 7. It is
composed of four neural network modules, namely
an illumination estimation module, a shading
module, an albedo estimation module, and a ren-
dering module. We elaborate on the details of each
module below.

Illumination Estimation Module. As men-
tioned above, the Illumination Estimation Mod-
ule (IEM) f takes a background image Ib and
a foreground mask M as input, and estimates

the illumination L̂M . However, it is very chal-
lenging to directly estimate a general illumina-
tion representation (i.e., illumination map) via an
encoder-decoder-based neural network because a
large number of parameters of illumination map
(e.g., 16×32×3=1536 parameters) lead to a high-
dimensional output space. Recently, Li et al. [17]
sought to estimate a parametric representation
of illumination, namely Spherical Gaussian (SG)
based illumination (typically with 84 parameters).
But, in practice, some problems still remain: 1)
Spherical Gaussian-based illumination representa-
tion can only recover high-frequency details due
to the limited amount of parameters, and some
low-frequency details are lost; 2) Due to the var-
ious changes in the shape, size, and number of
indoor light sources, there may be multiple solu-
tions for the same illumination map, which leads
to the instability of the model convergence.

Benefiting from the powerful complex signals
modeling capability of neural fields [49, 50], we
propose to construct a neural illumination field
via a multilayer perceptron to avoid the above
two problems. Specifically, we first construct an
encoder-decoder network to encode the back-
ground image into a low-dimensional spatially-
varying illumination feature F sv

illum. Then, accord-
ing to the placement position of the foreground
object in the mask, we select the corresponding
illumination feature F i

illum from F sv
illum. Finally,
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the illumination feature F i
illum combined with the

incident direction (θ, ϕ) of the ray are fed to an
MLP-based neural field (i.e., neural illumination
field) to reconstruct a complete illumination map
L̂M . Before (θ, ϕ) are fed into the neural illumina-
tion field, the positional encoding function γ(p) is
applied separately to each of (θ, ϕ) by introducing
Fourier features:

γ(p) =
(
· · · , cos

(
2Kπp

)
, sin

(
2Kπp

)
, · · ·

)
, (6)

where K ∈ [0, L − 1]. We set L = 128 in our
experiments and (θ, ϕ) are normalized to (−1, 1).
Note that once F sv

illum is estimated for one back-
ground image, only the neural illumination field is
used in IEM when the foreground is placed in dif-
ferent locations, which reduces the computational
complexity of the model.

NIF-based illumination v.s. SG-based illumina-
tion. We will analyze and compare them in detail
from the perspective of the basis and its pro-
jection coefficient. First of all, although the SG
function itself can represent high-frequency and
low-frequency signals (by changing its bandwidth
parameter), only a few SG functions are used to
mainly represent high-frequency illumination (i.e.,
those light sources) to avoid a high-dimensional
output space in practice [17]. In addition, since
the SG functions do not satisfy orthogonality, the
solution to the same illumination is not unique.
In contrast, the proposed NIF, which is designed
as an MLP with Fourier features-based positional
encoding, can alleviate these problems. The key
here is to introduce numerous Fourier features [49,
76], which is actually equivalent to introducing a
set of orthogonal bases. The illumination feature
fed to the NIF can essentially be interpreted as
the coefficients projected onto these orthogonal
bases. The illumination feature (i.e., the coeffi-
cients) and the Fourier features (i.e., the bases) are
passed through the NIF to capture the complex
interactions between them, thereby producing an
illumination map. Note that the number of illu-
mination feature here does not need to be exactly
the same as the number of Fourier features, and
can even be less than the number of Fourier fea-
tures. In other words, these Fourier features allow
our NIF to model both high and low-frequency
signals from a low-dim illumination feature. In

addition, for a given illumination map, the pro-
jection coefficients for these orthogonal bases (i.e.,
the Fourier features) are also unique, which may
allow the model to converge more stably. Finally,
our experiments also show that NIF-based IEM
outperforms SG-based IEM both quantitatively
and qualitatively.

The structure of the IEM is shown in Fig.
7. It consists of an encoder-decoder network and
an MLP. The MLP is composed of four fully-
connected layers and each layer is followed by a
rectified linear activation function.

Shading Module. Once the estimated illumi-
nation L̂M is obtained, it is fed into the Shading
Module (SM) h together with the input unharmo-
nious image Ĩf to achieve the shading result Ŝ.
Specifically, the encoder first extracts the object
feature from Ĩf , as shown in Fig. 7. Then, we
use a Lighting guided Feature Modulation (LFM)
block [65] to modulate the object feature with L̂M .
Finally, we feed the modulated object feature con-
taining the background illumination to a decoder,
resulting in a harmonized shading image.

Albedo Estimation Module. The Albedo
Estimation Module (AEM) takes an unharmo-
nious foreground image Ĩf as input to estimate

albedo Â. It is used to remove the original illumi-
nation of the foreground object. In principle, the
estimated albedo should be used as input to the
rendering module. However, due to the decrease in
the number of feature channels, decoding albedo
feature Falbedo to albedo Â is actually a feature
compression process, which may result in infor-
mation loss (especially the loss and distortion of
textures in albedo). This inaccurate estimate is
ultimately transmitted to our harmonized result
through the rendering module, causing a degrada-
tion in model performance. So instead of exporting
the estimated albedo Â to the rendering mod-
ule, we feed the albedo feature Falbedo into the
rendering module to alleviate this problem. We
refer the reader to Sec. 5.5 for more details. In
addition, due to the possible distortion of the tex-
ture in albedo estimation, the input unharmonious
foreground image Ĩf is combined with the albedo
feature Falbedo and fed into the rendering module.

The structure of the AEM is shown in Fig.
7. It is composed of an encoder-decoder network
and an MLP-based albedo decoder. They are

9



used to estimate the albedo feature and albedo,
respectively.

Rendering Module. As mentioned above,
the inputs to the Rendering Module (RM) are now
the shading image Ŝ, the albedo feature Falbedo,
and the input unharmonious foreground image Ĩf .
We feed them into an encoder-decoder network to
obtain the final harmonized image Îf as shown in
Fig. 7.

In our proposed harmonization framework,
all encoder-decoder networks adopt a U-Net-like
structure with skip connections. It mainly con-
sists of two parts: down-sampling blocks and
up-sampling blocks. See the supplementary mate-
rial for the detailed network parameters of the
IEM, SM, AEM, and RM.

4.3 Loss Functions

Our loss function consists of two parts: illumina-
tion estimation loss and reconstruction loss. The
illumination estimation loss lillum is defined as a
logL2 loss:

lillum =
∥∥∥log(LM + 1)− log

(
L̂M + 1

)∥∥∥2
2
, (7)

where LM denotes the illumination map Ground
Truth (GT). In addition, since per-pixel illumina-
tion GT is available in the Replica dataset, the
lillum is also used for other estimated illumination
at locations where the foreground is not placed.

The L2 loss is adopted for shading reconstruc-
tion. Besides, inspired by [77], the SSIM metric is
also used to supervise the learning of the AEM.
Thus, the reconstruction loss for albedo is defined
as,

lalbedorec =
∥∥∥A− Â

∥∥∥
2
+ λ(1− SSIM(A, Â)), (8)

where A denotes the albedo GT. We set λ = 1 in
our experiment. Similarly, the lalbedorec is also used
as the shading reconstruction loss lshadingrec and the
foreground reconstruction loss lrenderrec . As a result,
the final total loss ltotal is defined as follows:

ltotal = lillum + lalbedorec + lshadingrec + lrenderrec . (9)

5 Experiments

In this section, we first introduce experimental
setups, including evaluation metrics and training
details. We next compare our method with these
state-of-the-art methods both qualitatively and
quantitatively. Then, a user study on real data
is conducted to validate the effectiveness of our
method. We also compare our neural illumina-
tion field with parametric illumination. Finally,
we perform the ablation study to demonstrate the
contribution of each component of our framework
in isolation.

5.1 Experimental Setups

Evaluation metrics. For evaluation of image
harmonization, fSSIM[78], LPIPS[79], and fPSNR
are selected. Note that the prefix f indicates that
the metric is only calculated on the foreground
region. Besides, we also choose the MPS [80]
(Mean Perceptual Score), which is a normalized
average of the fSSIM and LPIPS, as the determi-
nant metric to rank these methods. Since LPIPS
is calculated over the entire image, its value is
relatively small. To balance the weight between
fSSIM and LPIPS, we modified the original MPS
by multiplying LPIPS by 10:

MPS = 0.5 ∗ (fSSIM + (1− 10 ∗ LPIPS)). (10)

Training details. We implement the model
via the PyTorch framework [81] and train the
model on 1 Intel Xeon Gold 6246 CPU and 2
NVIDIA TITAN RTX GPUs. The parameters of
our networks are initialized with Kaiming Uniform
Initialization [82]. We optimize the model param-
eters by the Adam optimizer for 80 epochs, with
a learning rate = 1e-4, betas = (0.9, 0.99). The
batch size is set to 8 to maximize GPU memory
utilization. Note that due to the directionality of
the illumination, we only applied data augmen-
tation techniques (including random rotation and
flipping) to AEM and RM.

5.2 Comparison with
State-of-the-Art Methods

To validate the superiority of the proposed
method, we compare it with four representa-
tive open-source image harmonization methods,
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Fig. 8 Qualitative comparison of different methods on the test set. We show representative examples with close-up details
focusing on brightness, color, shading, and artifacts. Our method outperforms all other approaches with more accurate and
sharper details. Zoom in for a better view.

namely Lalonde and Efros [4], Sg-MMH [6], Har-
monizer [1] and DCCF [2]. Note that Sg-MMH,
Harmonizer, and DCCF are all learning-based
state-of-the-art methods. To make a fair compari-
son, we re-train the three methods on our training

set according to the training configurations given
by the authors. See the supplementary for their
training details. When their losses converge, we
report their results on the test set. In addition, we
also report the results of their released pre-trained
models on the test set.
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Method MPS↑ fSSIM↑ LPIPS(×10)↓ fPSNR↑

Lalonde and Efros [4] 0.775 0.737 0.187 14.84
Sg-MMH∗[6] 0.823 0.784 0.138 17.57
DCCF∗[2] 0.836 0.796 0.124 18.16
Harmonizer∗[1] 0.857 0.812 0.099 18.30
Sg-MMH [6] 0.885 0.854 0.084 22.27
Harmonizer [1] 0.890 0.855 0.075 21.28
DCCF [2] 0.897 0.858 0.064 22.72
Ours 0.921 0.894 0.052 23.58

Table 2 Quantitative results of different methods on the
test set. All the methods are ranked by MPS in ascending
order. The best results are marked in bold. The second-
best results are underlined. ∗ denotes that the pre-trained
model released by the authors is used. ↑ denotes the
higher the better, and ↓ denotes the lower the better. It
can be seen that our method achieves the best MPS result.

Quantitative comparison. The quantitative
comparison on the test set is shown in Tab. 2.
First, it can be observed that our method achieves
the best MPS of 0.921, a 0.024 improvement over
that of the second-best method (DCCF). Specif-
ically, for LPIPS and fSSIM, our results achieve
approximately 18.8% and 4.2% improvements over
DCCF, respectively. The MPS of Lalonde and
Efros’s method is the worst at only 0.775.

Second, benefiting from our dataset, all the
re-trained Sg-MMH, Harmonizer, and DCCF out-
perform their own pre-trained models by a large
margin, with improvements of 7.5%, 3.9%, and
7.3% in MPS, respectively. This is mainly due to
the fact that each input and GT pair in their
original training datasets only contains color and
brightness variations. In contrast, each pair in
our dataset also contains additional shading vari-
ations caused by varying illuminations. It implies
that the new setting introduced in our constructed
dataset poses a greater challenge to existing image
harmonization methods.

Method Sg-MMH [6] Harmonizer [1] DCCF [2] Ours

# Parameters (M) 39.502 4.727 18.092 9.109
Inference time (ms) 13 9 40 36

Table 3 Comparison in terms of the number of model
parameters and inference time.

In Tab. 3, we also compare the number of
model parameters and inference time of these
learning-based methods. All methods are running
on the test set using a single TITAN RTX GPU.
The average inference time (excluding image load
and write time) for a single image with an original

resolution of 640×480 is reported, except that Sg-
MMH runs on 512×512 images since their method
only supports fixed resolutions. Although DCCF
achieves the second-best MPS result, its number
of model parameters is also the second-largest,
reaching 18.092M. In contrast, our model not only
achieves the best MPS result but also has the
second-smallest number of parameters, approxi-
mately half that of DCCF. However, our model
has the second-longest inference time of 36 ms.
This is mainly because our model is composed of
four modules, which need to be calculated sequen-
tially, resulting in more time overhead. The Har-
monizer has the smallest number of parameters
and the fastest inference time, which are 4.727M
and 9 ms respectively. Sg-MMH has the largest
number of parameters (39.502M), but its infer-
ence time is only around 13 ms, mainly because it
consists of only one simple U-Net.

Qualitative comparison. The qualitative
comparison on the test set is shown in Fig. 8.
We show the results with different illumination
conditions on typical indoor scenes, including the
classroom, shopping mall, and bedroom. It can be
observed that our method produces more realistic
results, where the foreground is compatible with
the background image. Taking Fig. 8 (a) as an
example, the foreground object of the input com-
posite image appears to be illuminated from the
right of the image, as is evident in the shadows of
the man’s face. Given that the background scene
consists of multiple light sources evenly located
on the ceiling, the man should be under smooth
illumination at P1 and P2. The Sg-MMH, Harmo-
nizer, and DCCF fully preserve the original illu-
mination on the foreground object. Both DCCF
and Harmonizer are struggling to remove them,
but some shadows still remain on the white cloth.
Lalonde and Efros’ method mistakenly transfers
the color of the glass walls to the man and thus
produces greenish results. In contrast, our result is
closer to the ground truth in terms of brightness,
color, and shading. The same can be observed in
Fig. 8 (b). For the lady at P1, these competing
methods preserve some shadows from the origi-
nal illumination. In addition, their results are also
overall darker compared to the ground truth due
to the presence of the original shadow. Our result
is closer to ground truth in terms of brightness
and shading, but it is slightly less yellow. Fig. 8
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Fig. 9 Qualitative comparison of five state-of-the-art methods and our proposed method on real composite images. We
show representative examples with different illumination conditions. Due to the lack of ability to perceive 3D information
(that is, spatially-varying illumination), these competing methods may produce obviously erroneous results that do not
match the lighting distribution of the real physical world. In contrast, our method produces more accurate and sharper
results.

(c) shows a challenging example where the light
source is not directly visible in the background
image. However, it can be seen from the bedroom
floor that the intensity of light gradually decreases

from P2 to P1. The results produced by these com-
peting methods for the two locations are not much
different in brightness. In contrast, our results are
in line with the light intensity distribution of the
bedroom.
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Method Score (Q1)↑ Score (Q2)↑ Score (Q3)↑ Total Score↑

DIH-GAN [13] 0.118 0.217 0.103 0.146
Sg-MMH [6] 0.395 0.574 0.800 0.590
SPRIH [38] 1.444 1.202 1.506 1.384
DCCF [2] 1.435 1.231 1.574 1.413
Harmonizer [1] 1.734 1.390 1.140 1.421
Ours 1.968 1.867 1.669 1.835

Table 4 User study on real data. All the methods are
ranked by the total score in ascending order.

5.3 User Study on Real Data

A user study on real data is conducted to ver-
ify the superiority of our proposed method for
indoor harmonization. First, we made a total
of 52 real composite images of which both the
foreground images and the background images
are collected from the Internet. Specifically, 18
real foreground humans for clothing display are
collected from Taobao [83] and cover different gen-
ders (male, female), ages, poses, and clothing. 15
indoor background images are collected from Poly
Haven [74], HDR MAPS [75], and Laval [39], and
cover various indoor scenes, such as classrooms,
workshops, and offices. Note that the background
images collected from Laval are not used in our
constructed indoor harmonization dataset. All the
foreground images and background images are
captured by real professional cameras. Next, we
select three open-source state-of-the-art methods
(i.e., DCCF [2], Harmonizer [1] and Sg-MMH [6])
as the competing methods. We used their pub-
licly released pre-trained models to process these
composite images. In addition, we also compare
two methods that are close to our work, namely
SPRIH [38] and DIH-GAN [13]. Their results are
provided by the authors.

Then, for each composite image processed by
these six methods, we ask 31 individuals to score
the visual quality. As inspired by [10], the follow-
ing three questions are considered for scoring: (1)
Are the brightness and color of the foreground and
background consistent; (2) Are the shadings/shad-
ows of the foreground and background consistent;
and (3) Are the texture distortions/artifacts of the
foreground serious. The visual quality score ranges
from 0 to 3 (worst to best quality).

Finally, we report the results in Tab. 4. It
can be seen that we achieve the biggest rela-
tive improvement in Q2. This is mainly because
our proposed harmonization framework effectively
removes the effects of original illumination, and

numerous illumination variations are also included
in our training data.

In Fig. 9, we also show qualitative results of
different methods. Fig. 9 (a) shows a very chal-
lenging example. The lady of the input composite
image appears to be illuminated by a dark and
smooth illumination in her original environment.
However, the background scene is illuminated by
two bright light sources, a cold white light source
on the left side of the image and a warm yel-
low light source in the middle of the image. We
placed the lady near each of the two light sources,
respectively. For the lady at P1 who is close to the
white light source, both Harmonizer and DCCF
mistakenly transfer the color of the yellow light
source to the lady. SPRIH still shows a weak yel-
low color. The results of Sg-MMH and DIH-GAN
also contain some yellow artifacts, which are visu-
ally undesirable. In fact, due to the lack of ability
to perceive 3D information (i.e. spatially-varying
illumination), these methods are easily misled by
the illusion that the lady is closer to the yellow
light source in the view of 2D image space. In con-
trast, our method produces bright white results
that appear to be illuminated by the cold white
light source. In addition, for the lady at P2 who
is close to the yellow light source, the results pro-
duced by these competing methods are too dark,
and the yellow color is not obvious enough. Our
results show a more pronounced yellow appear-
ance. The same can also be observed in Fig. 9
(b). Fig. 9 (c) shows an example where the back-
ground only contains a yellow light source. In the
real physical world, the energy of light decreases
rapidly with the square of the distance. However,
the results of these competing methods show that
there is not much difference in the brightness of
the lady at the two positions. In addition, since
Sg-MMH is a mask-free harmonization method,
they seem to identify the background as an inhar-
monious region and adjust it, resulting in many
unpleasant artifacts. In contrast, our harmonized
results are not only visually pleasing but consis-
tent with the light intensity distribution of the
background scene.

5.4 Comparison with Parametric
Illumination

The efficacy of our neural illumination field (NIF)
based IEM is compared with the parametric
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Fig. 10 Qualitative comparisons of SG-based IEM and
NIF-based IEM. As shown in the close-ups, our NIF-based
IEM produces more accurate illumination results in terms
of the number, shape and position of light sources and back-
ground texture.

illumination-based IEM for spatially-varying illu-
mination estimation. Here, we adopt spherical
Gaussian (SG) [17] as the parametric illumination
representation for comparison. NIF-based IEM
and SG-based IEM are both trained and tested
on our per-pixel illumination dataset, which is
constructed from the Replica dataset. For a fair
comparison, the channel dimension of the illumi-
nation feature produced by the encoder-decoder
network in both IEMs is set to 84. The quanti-
tative results are reported in Tab. 5. Compared
with the SG-based IEM, the MAE and RMSE of
our NIF-based IEM decreased by 7.9% and 3.0%,
respectively. In Fig. 10, we show the qualitative
results. In addition, we also combine the two IEMs
with other modules to compare their impacts on
indoor harmonization, as shown in Fig. 11. For
example, on the left side of the illumination map
in Fig. 11 (a), as indicated by the red arrow, the
result of SG-based IEM loses the light source.
Correspondingly, at the red dased box in the fore-
ground (mainly affected by the left half of the
illumination map), their rendering appears dark.
In contrast, our result based on NIF-based IEM is
slightly brighter, which is closer to GT. The same
can also be seen in Fig. 11 (b).

97 109

NIF-based 
IEM (Ours)

SG-based 
IEMInput GT Error map& Error map& 

(b)

(a)
44 49

Fig. 11 The impact of SG-based IEM and NIF-based IEM
on image harmonization. Note that due to the inaccurate
illumination estimation of SG-based IEM (e.g., the light
sources are missing at the red arrow and green arrow), this
will inevitably cause inaccurate renderings at the corre-
sponding position in the foreground (such as the red and
orange dashed boxes). In contrast, our renderings based-on
NIF-based IEM show more accurate results as shown in the
error maps. The error map is calculated by squared error,
and the red number indicates the mean of the error map.

MAE ↓ RMSE↓

SG-based IEM 0.164 0.405
NIF-based IEM (Ours) 0.151 0.393

Table 5 Quantitative comparison of using SG-based
IEM and NIF-based IEM for spatially-varying
illumination estimation.

5.5 Model Analysis

Ablation on our framework. In Tab. 6, we per-
form an ablation study to demonstrate the effect
of each component in our framework.

Configuration MPS↑ fSSIM↑ LPIPS(×10)↓

Baseline model (=Model 0) 0.887 0.851 0.078
Model 0 + SSIM Loss (=Model 1) 0.891 0.870 0.089
Model 1 + IEM (=Model 2) 0.897 0.866 0.072
Model 2 + SM (=Model 3) 0.908 0.880 0.064
Model 3 + AEM (=Ours) 0.921 0.894 0.052

Table 6 Ablation study on the proposed framework.

We start with an end-to-end model commonly
used in the field of image harmonization as our
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baseline model (i.e., Model 0). Specifically, the
baseline model consists of only a rendering module
whose input is a composite image and a fore-
ground mask, and the output is a harmonized
image. Only the basic L2 loss is included to
train the baseline model. It achieves an MPS of
0.887. When the SSIM loss (Model 1) is added
to the baseline model, we observe a 0.004 MPS
improvement where the gain comes from SSIM.

We next add the illumination estimation mod-
ule (Model 2) to Model 1. Here, the LFM is also
added to the bottleneck of the rendering module
to make use of the estimated illumination. Exper-
imental results show a 0.006 improvement in MPS
due to the utilization of illumination information.

We then add the shading module (Model 3)
to Model 2. At this point, the LFM is moved
to the shading module. The generated foreground
shading is later combined with the unharmonious
foreground image as input to the rendering mod-
ule. Compared with directly using illumination
information, the way of converting illumination
information to the shading, which is approaching
the final harmonious image, can bring a significant
improvement of 0.011 in MPS.

Finally, We add an albedo estimation mod-
ule (Ours) to Model 3. The current model shows
the largest improvement of 0.013 in MPS. This is
mainly because the model can effectively remove
the effect of original illumination, as shown in
Fig. 12. For example, the blue box in the input
image shows that the foreground man is originally
illuminated by the light source on the right, as
is evident in the shading variation of the man’s
clothes. However, the results of ours without AEM
more or less preserve the original illumination
effects. In contrast, ours with AEM not only effec-
tively removes the original illumination effects of
the man, but also re-render it under a smooth
background illumination.

Effect of albedo feature.We feed the albedo
feature into RM instead of the estimated albedo
itself, because the estimated albedo sometimes
suffers from texture distortion problems as shown
in Fig. 13(b), especially at the blue dashed box.
This erroneous estimate may be passed to the
harmonized result through RM, and ultimately
lead to the degradation of model performance, as
shown in Tab. 7 and Fig. 13(c). In contrast, the
albedo feature contains more rich information and
can effectively alleviate this problem because there

Fig. 12 Qualitative results of ablation study. Ours with-
out AEM (i.e., Baseline model, Model 1 + IEM, Model
2 + SM) retain the effect of the original illumination, as
shown in the red and blue boxes. They also produce some
distorted textures. In contrast, ours with AEM is closer to
ground truth.

is no feature reduction process (that is, compress-
ing from albedo feature to albedo). As shown in
Fig. 13(d), even if the estimated albedo has some
problems, our proposed framework (i.e., albedo
feature to RM) still shows more accurate results.

Configuration MPS↑ fSSIM↑ LPIPS(×10)↓

Ours w. a shared backbone 0.913 0.884 0.058
Ours w.o. albedo feat. 0.914 0.887 0.060
Ours 0.921 0.894 0.052

Table 7 Quantitative results of ours without albedo
feature and ours with a shared backbone in SM and AEM.

Effect of a shared backbone in AEM and
SM. Since AEM and SM share the same input,
we study the effect of a shared backbone in AEM
and SM. Specifically, we first use a shared encoder
network to extract features from the input image,
and then send them to their respective decoder
networks to obtain shading and albedo features
respectively. The other modules of our model
remain unchanged. Although the model with a
shared backbone is more concise and has fewer
parameters, its MPS is 0.008 lower than our MPS
as shown in Tab. 7.

The performance of our framework on
a general object harmonization benchmark.
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Fig. 13 Qualitative comparisons w.r.t. albedo feature.
Note the man’s highlights on the left in the red dashed box
of the input image. Ours w.o. albedo feature still retains
part of the highlights, as shown in the green dashed box.
In contrast, ours shows more accurate results in the yellow
dashed box compared to GT. The error map is calculated
by squared error, and the red number indicates the mean
of the error map.

To further investigate the harmonization per-
formance of our framework on general objects,
we select a general object harmonization dataset
HVIDIT [18] as the benchmark dataset because it
contains shading variations caused by color tem-
perature and direction changes of a single global
point light source. We train different versions of
our framework on the HVIDIT and report the test
results in Tab. 8.

Method PSNR↑ SSIM↑ fMSE↓

Retinex-Net [84] 36.32 0.9321 1603.21
DIH [5] 36.62 0.9310 1207.03
S2AM [6] 36.24 0.9206 1230.92
DoveNet [7] 36.80 0.9585 1186.19
IIH [18] 41.55 0.9914 800.92

Ours (Model 1) 41.71 0.9945 796.80
Ours (Model 1 + Data aug.) 42.04 0.9950 762.71
Ours (Model 2) 42.40 0.9954 695.37

Table 8 Quantitative results of our framework on the
test set of HVIDIT. The results of all other competing
methods are directly copied from [18]. It can be seen that
our method achieves the best results.

Specifically, we first trained our baseline model
with SSIM loss (i.e., Model 1) on the HVIDIT
dataset, and we achieved a test result of 796.80 in
fMSE, which is 4.12 lower than that of IIH. Then,
some data augmentation techniques (i.e., random

Fig. 14 Qualitative results of our proposed method and
IIH on the HVIDIT. Compared with IIH, our results are
closer to GT.

flipping and rotation) are added to increase the
diversity of training data, bringing the fMSE down
to 762.71. Finally, we further added the IEM to
Model 1 (i.e., Model 2) and used the ground truth
color temperature of background illumination to
supervise the learning of the IEM. With the use of
illumination information, our method achieves the
best fMSE of 695.37, a 13.2% decrease compared
to IIH. Note that the ground truth color temper-
atures are obtained from the VIDIT dataset [80]
that HVIDIT is based on, and the HVIDIT itself
does not provide them. Besides, since the back-
ground scene from VIDIT is only lit by a global
point light source, our current IEM removes the
NIF used for spatially varying illumination esti-
mation and only consists of an encoder network
for estimating a global color temperature. The
HVIDIT dataset contains 5 pre-defined color tem-
perature values [2500K, 3500K, 4500K, 5500K,
6500K], and each background image corresponds
to a specific color temperature. Therefore, here we
use the cross-entropy loss function as lillum instead
of the logL2 loss in Eq. 7. In Fig. 14, we also show
qualitative results.

Generalization to non-human objects. To
evaluate the generalization performance of our
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Fig. 15 Generalization to non-human objects.

method (trained on our indoor harmonization
dataset) to non-human objects, Fig.15 shows the
results of our method on some common objects,
such as plants, cats, and motorcycles. The results
of other methods, obtained by their released pre-
trained models, are also given for comparison.
It can be observed that our method produces
more reasonable results in terms of brightness,
color and shading, which are consistent with the
illumination distribution of indoor scenes. Tak-
ing Fig.15(a) as an example, the potted plant in
the input image was originally in a dark envi-
ronment and was mainly illuminated by a light
source coming from its right side, which can be
seen from the shadows on the leaves. However, the
main light source in the background image is from
the left side and the light intensity of the back-
ground decreases from left to right. The results
of Sg-MMH at P1 and P2 have almost no differ-
ence in brightness. The results of Harmonizer are
interesting. Although the leaves at P1 is brighter

than that at P2, the pot at P1 is darker than
that at P2, which is self-contradictory. The results
produced by DCCF are reasonable in terms of
brightness, but the color of the leaves appears too
yellow. In contrast, the results produced by our
method appear to be consistent with the back-
ground illumination in terms of brightness and
color, and our shadings also reflect that the main
light source of the background is from the left side.
The same can be observed in Fig.15(b). Fig.15(c)
shows an example where the background scene is
illuminated by some cold white light sources. The
results of these competing methods are almost too
dark. In contrast, our method produces results
that appear to be illuminated by those cold white
light sources.

5.6 Discussion

Discussion about our dataset. 1) Our current
dataset only focuses on the human body. There
are two main reasons: first, in actual scenarios,
whether for professional or amateur Photoshop
users, the main object of photo editing is often
people [36]; second, the construction of large-scale
datasets includes several very time-consuming
steps such as data collection, cleaning, and pro-
cessing, which also require a lot of human labor.
Anyway, through the human body, this work
investigates a new problem (i.e., spatially-varying
illumination-aware indoor harmonization). 2) We
also note that the latest work [85] has photomet-
rically calibrated the Laval indoor HDR dataset
to obtain more accurate HDR panoramas. Based
on the latest dataset, more panoramas can be
exploited to further increase the diversity of our
indoor harmonization dataset. 3) The background
images sometimes exhibit some lens distortion.
It is mainly introduced in the process of captur-
ing images using the camera with a fisheye lens,
especially for the Laval indoor HDR dataset. In
addition, some distortion could also be introduced
during the image-stitching process for an HDR
panorama.

Discussion about our proposed framework. 1)
Our method sometimes produced a texture-less
appearance as shown in Fig. 16 (especially in the
blue box). This is mainly because our SM does not
effectively perceive the geometry of the input fore-
ground image, thus rendering too smooth shading.
Note that the illumination map is also one of
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two inputs of the SM, but even a completely
wrong illumination estimate will cause shading
variations due to changes in the object’s surface
geometry. In other words, the estimated illumi-
nation is not the main cause of smooth shading.
We also give our albedo result for reference. It
can be seen that our estimated albedo completely
removes the original illumination effects. Finally,
the smooth shading and the albedo feature are
combined to produce a texture-less appearance
through the RM. In the future, we will focus on
improving the model’s ability to perceive geomet-
ric changes in foreground objects. For example, we
could consider introducing depth information or
using off-the-shelf depth estimators in our SM to
improve the rendered shading result. 2) Besides,
the inaccurate illumination estimation causes our
final harmonized result to look slightly warmer as
shown in Fig. 16. In addition to directly improving
the IEM, another interesting and simple alter-
native is to incorporate image color correction
into our framework as a post-processing step. For
example, we can train a lightweight network [86]
to predict a nonlinear mapping function from
the initial harmonized image, and then combine
it with the polynomial kernel function to per-
form global color correction on the initial result.
3) Regarding the FOV mismatch between fore-
ground and background, at the methodology level,
our proposed framework first extracts illumination
from the background and then uses the illumi-
nation to adjust the foreground appearance. In
other words, we do not directly process the com-
posite image that contains both the foreground
and background but process the foreground and
background separately. In contrast, most existing
image harmonization methods [2, 5–7, 27] directly
process the composite image, which may be sensi-
tive to the FOV mismatch. 4) Few works consider
both image harmonization and shadow genera-
tion tasks. In the future, one of the promising
extensions of our framework is to integrate the
shadow generation module that can be guided
by our estimated spatially-varying illumination.
5) Introducing more complex reflectance prop-
erties into our framework, such as the specular
BRDFs [87], could further improve the realism of
image harmonization.

GT GT albedo GT shading

Ours Our albedo Our shading Our illum.

GT illum.

Input

Fig. 16 The limitation of our proposed method. Since the
SM does not effectively perceive some subtle surface geo-
metric changes (such as the wrinkles of clothes in the green
box), it cannot render accurate shading that reflects the
geometric changes of the object. This ultimately causes our
harmonized result to look texture-less, as shown by the
blue box. In addition, the estimated inaccurate illumina-
tion causes our harmonized result to look slightly warmer
than GT.

6 Conclusion

In this paper, we have contributed a large-scale
photo-realistic indoor harmonization benchmark
dataset. In the dataset construction, we use an
object placement formula to place the foreground
object in the background at a reasonable size. We
also present a novel physically-inspired, learning-
based indoor harmonization framework, which
allows using perceived spatially-varying illumi-
nation to adjust the foreground appearance. It
consists of four compact neural modules, among
which the albedo module can effectively remove
the effects of original illumination. An MLP-
based neural field with positional encoding is also
included in the illumination estimation module to
recover the illumination more accurately. We qual-
itatively and quantitatively demonstrate the effi-
cacy of our proposed framework at better match-
ing the lighting distribution of the background
compared to the other competing methods.
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data used to construct our datasets are avail-
able from the Laval Indoor HDR dataset [39],
the Replica dataset [67], Poly Haven [74], HDR
MAPS [75], 3D People [68], and Taobao [83].
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