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Abstract—This paper proposes a novel multimodal fusion
network (MRDFNet) for egocentric hand action recognition from
RGB-D videos. First, we utilize three separate streams to extract
individual spatio-temporal features for different modalities,

which include RGB frames, optical flow stacks, and depth frames.

Particularly, for RGB and depth streams, an Attention-based
Bidirectional Long Short-Term Memory network (Bi-LSTA) is
used to identify regions of interest both spatially and temporally.
Then, the extracted features are fed into a fusion module to
obtain the integrated feature, which is finally used for egocentric
hand action recognition. The fusion module is capable of learning
complementary information from multiple modalities, i.e.,
preserving the distinctive property for each modality and
meanwhile exploring the shareable property across modalities.
Experimental results on both self-collected RGB-D Egocentric
Manual Operation Dataset in Electrical Substations (REMOD-
ES) and the THU-READ containing daily-life actions show the
superiority of the proposed approach over state-of-the-art
methods.

Keywords—hand action recognition, human-object interaction,
multimodal data, attention mechanism, egocentric video

I. INTRODUCTION

Electrical systems need regular maintenance to prevent
system and equipment failures and ensure maximum safety and
efficiency in the utilization of the facilities. The maintenance of
electrical equipment is usually conducted by electricians and
maintenance personnel who are knowledgeable in the
maintenance process. They typically follow or use an electrical
maintenance checklist. To ensure a safe work environment
when working with or around electrical equipment, the
implementation of electrical safety rules must always be
followed by the personnel in their work area, such as use
proper safety equipment, shut off power, inspect electrical
equipment for damage, perform proper and reliable operations
in order. Except the safety consciousness of the personnel,
strengthening the management of power safety production can
also ensure the stability and safety of the power system. With
the development of intelligent surveillance technology, such as
action recognition, timely identifying unsafe actions of the
personnel and providing reminders or alerts to prompt
correction could greatly contribute to the electrical systems.

Action recognition has traditionally been studied from a
third-person view, for example, from a static or a handheld
camera. Compared with the third-person view of security
cameras which usually have a long capture range and suffer
from occlusions, it is easier to capture the hand action from the
first-person view when the wearers act and provide the close-
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ups with their visual attention. Hand action is an human
activity that involves hand-object interaction, which can be
described by an action-object pair. For example, when
substation operators perform common operation and
maintenance of equipment and protective switchgears, many
manual operations are conducted, such as open an isolator, turn
off a circuit breaker, measure the bus voltage, and clean dirt
deposits on the bushings.

Moreover, complementary RGB-D modalities enrich raw
data for action modeling, which has been proven to improve
the accuracy for action recognition. However, due to the
limited capture range of RGB-D cameras, multimodal action
recognition methods cannot be applied to long-range
surveillance. This shortcoming is greatly mitigated in first-
person hand action recognition which is oriented mainly
toward short-range applications, such as home healthcare,
smart TV, robot imitation learning, and teleoperation. However,
limited research has been conducted to investigate this problem
in the egocentric paradigm. This is mainly due to three reasons:
1) the difficulty of exploring complementary information from
multiple modalities for egocentric action recognition, 2) the
inherent challenges in the egocentric scenario, such as noisy
background and ego-motion of the camera, and 3) the scarcity
of publicly available RGB-D egocentric hand action dataset.

In this work, we focus on the electrical substation scene,
and propose a multi-stream deep learning-based method for
RGB-D egocentric hand action recognition. The main
contributions of our work are threefold. Firstly, we introduce
the spatio-temporal attention mechanism for feature extraction
to mitigate the effect of cluttered background and ego-motion
of the camera. Secondly, we present a multimodal fusion sub-
network to explore complementary information from multiple
modalities for egocentric hand action recognition, by learning
the distinctive property for each modality and the shared
property across modalities. Finally, we collect a new dataset for
RGB-D egocentric hand action recognition in the electrical
substation scene. Extensive experimental results on the self-
collected dataset and another benchmark for daily-life action
recognition clearly show that our proposed method achieves
superior performance compared with state-of-the-arts methods.

The remainder of this article is organized as follows.
Section II introduces related studies. Our single modal feature
extraction sub-network and multimodal fusion sub-network are
introduced in Section III and Section IV respectively.
Experiments on two first-person hand action recognition
datasets are performed in Section V. Finally, the conclusion of
this study is presented in Section VI.



II. RELATED WORKS

A. Traditional first-person hand action recognition

Developing discriminative action representations with
handcrafted features are one of the most important perspectives
of studies in this field. Kitani et al. [1] computed optical flow
images and extracted corresponding global action descriptors
for representing first-person actions. To exploit the spatial
distribution of features, Bambach et al. [2] proposed hand
regions helped understanding first-person behavior, Pirsiavash
et al. [3] used multiple HOG features to build corresponding
spatial model, Fashi et al. [4] proposed intermediate layer
action features and associated attention information.

B. Deep learning-based first-person hand action recognition

Deep learning has been overwhelmingly successful in
multiple fields compared to traditional methods, such as
computer vision, natural language processing, video/speech
recognition. Ryoo et al. [S] proposed a new pooled feature
representation with Convolutional Neural Network (CNN).
Singh et al. [6] designed an end-to-end CNN to detect both
head and hand motions and extract saliency regions. Ma et al.
[7] proposed a gesture recognition method consisting of
multiple sub-networks, including hand action segmentation
sub-network, manipulated object localization sub-network, and
hand action recognition sub-network. Zhang et al. [8] proposed
a Long Short-Term Memory network (LSTM) for egocentric
hand action recognition, which was capable of handling such
“long-term dependencies” and solving the vanishing gradient
problem. Considering the discriminative information in the
input sequence can not be spatially localized, which is one of
the shortcomings of LSTM, Sudhakaran et al. [9] further
introduced spatio-temporal attention.

However, most of the above mentioned methods are
proposed for single modal data. A few multimodal hand action
recognition methods  have been proposed. Multistream
networks are the most representative approaches for fusing
multimodal features. Yamazaki et al. [10] presented a
framework  for  recognizing first-person  hand-object
interactions from a RGB-D sequence. Tekin et al. [11]
proposed to predict frame-wise hand poses, object poses,
object classes, and action classes. Li et al. [12] studies transfer
learning from object recognition to hand action recognition.
These methods basically adopt either early fusion or late fusion
strategies. In early fusion, multimodal features are combined
before they are fed into a classifier. In late fusion, the features

of each modality are often associated with a classification score.

All the scores are jointly used to predict an action class label.

C. Egocentric Hand Action Recognition in Substations
Operations and Maintenance

Considering the accessing to large-scale labeled datasets,
most existing recognition models are focused on recognizing
egocentric actions in daily life, since publicly available first-
person hand action datasets are mostly collected during daily
living [13-15]. Little research on recognizing first-person hand
action in a particular scene, such as an electrical substation, has
been done[16-17]. The main reason is the scarcity of publicly
available RGB-D egocentric hand action dataset in the
electrical substation scenario.

[II. SINGLE MODAL FEATURE EXTRACTION SUB-NETWORK

To extract spatio-temporal features for single modal input,
we construct a sub-network consisting of a spatial module and
a temporal module. Specifically, for the spatial module, on the
basis of a skeleton CNN, such as a pretrained ResNet-34 [18]
on ImageNet [19], we adopt the Class Activation Map (CAM)
[20] mechanism to generate the attention map which is used to
weight the output of the last convolutional layer (layer4) of
ResNet-34. For the temporal module, we present a
Bidirectional Long Short-Term Attention (Bi-LSTA) unit for a
smooth and focused tracking of a latent representation of the
video to generate the spatio-temporal features.

A. Spatial module

We present a schematic view of the spatial module in Fig.
1. For a given image I, at time t, let fi(i) represent the
activation value of convolutional unit [ in the last convolutional
layer at spatial location i, and w, represent the weight for class
¢ in unit [. Then the CAM for class c at time t is

M:(D) = %, wif1(D), (1

which directly indicates the importance of activation at spatial
location i leading to the classification of image I, to class c.
Hence the CAM can be regarded as a saliency map indicating
different spatial weights for local regions leading to the
classification. Normally the regions containing the wearer’s
hand and the manipulated object have higher weights
comparing to other background regions.

We use a pretrained ResNet-34 as the base network, and
add a spatial attention layer after the last convolutional layer
(layer4). By multiplying the attention map calculated from the
CAM using a softmax operation with the output of layer4 of
ResNet-34, the attention-based spatial feature f5,(i) for I, by
the spatial module is,
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Fig. 1. Network architecture of the spatial module. The details of the spatial
attention layer is showed in the right subfigure surrounded by red dashed lines.
The Bi-LSTA unit is from the temporal module presented next.
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where f*(i) is the output feature of layer4 at spatial location i,
and ® denotes the Hadamard product.

B. Temporal module

After extracting spatial features for single frame, we use a
temporal module to further extract discriminative spatio-
temporal patterns. Inspired by [9] and [18], we build a
bidirectional LSTA architecture to focus on features from
relevant spatial parts while attention being tracked smoothly
across the sequence. The bidirectional strategy helps extract
better spatio-temporal patterns from both directions.

The LSTM unit has two key components, the attention
pooling operation that selects one out of a pool of specialized
mappings to realize attention tracking and the output gating.
The attention pooling { on spatial features f§, returns a map v,
that is fed through a conventional RNN cell with memory a,
and output gate s,. Its output state s,On(a,) is added to the
input v, and softmax calibrated to obtain an attention map s.
The map s is then applied to f%,, that is, sOf%, is the attention
filtered feature for updating memory state c¢;  using
conventional LSTM recurrence. The output gate uses a filtered
view of the updated memory state v.Oc,. To obtain v, through
pooling we use sOf§, to control the bias of operator , hereby
coupling attention tracking with output gating. This model
instantiated for hand action recognition from egocentric video
in its convolutional version is,

Vg = C(fg'A' wa)' (3)

(io fospa) = (0,0,0,M (W, * [V, 5.-10n(a;-1)]), (4)
a, = f,0a,1 +1,0q, (5)

s = softmax(v, + s,0n(a,)), (6)

(e for©) = (0,0,m (W, * [sOfgy, 0,_1On(c,_)]), (7)
C = fc‘@ct—l +i.0c, (8)

Ve = Z(Ct: W, + on(SOf.tS‘A))' )

o, =a(W, * [v.0c, 0,_1On(c,_1)]. (10)

Egs. 3-6 implement our recurrent attention, Egs. 9-10 are
our coupled output gating. Bold symbols a;, s;, ¢; and o,
represent recurrent variables, w,, w., W,, W, and W, are
trainable parameters, o and 7 are sigmoid and tanh activation
functions, * is convolution, © is point-wise multiplication. The
pooling ¢ can be viewed as a trainable attention model for input
features, and € is the consistent reduction associated to C.

To enhance the effect of LSTA, we follow the bidirectional
LSTM model [21] and build a Bi-LSTA architecture, which
consists of a LSTA cell with two hidden cell states. Fig. 2
illustrates the network architecture of our proposed Bi-LSTA.

IV. MULTIMODAL FUSION SUB-NETWORK

In this section, we explain our multimodal fusion sub-
network for egocentric hand action recognition incorporating
the single modal feature extraction sub-network of Sec. III. To
deal with multimodal inputs, inspired by [15], we build a three

stream architecture with early fusion strategy to generate the
final feature for egocentric hand action recognition: one stream
for encoding spatio-temporal information from RGB frames,
the second stream for encoding motion information from
optical flow stacks, and the third stream for encoding spatio-
temporal information from depth frames.

Let X ={X;}¥, represent the features extracted from
individual modals, where X; denotes the features from
modality i and K is the total number of modalities. In this work,
we set K to 3. The extracted single modal features X is fed to
the multimodal fusion sub-network to obtain the final feature
H(X) by exploring shared feature g(X) and distinctive features
{fi(X)}X,. The shared feature g(X) can be calculated by

1
9X) =23 gi(X). (11)

The relationship between X and g;(X;) is
9:(X) = FOWSX, +b9),i = 1.2,...,K, (12)

where F is a nonlinear function (convolutional block), Wi and
b{ represent weight matrix and bias matrix respectively.

Similarly with g;(X;), the distinctive features {f;(X)}<;
are calculated following

fi(X) = FW4X, +bd),i=1.2,...,K. (13)

By assigning different weights to the objective function
H(X), the multimodal feature fusion can be formulated by

HX) =3, & fiX) + fg(X), (14)
S atp=1 (15)
where a; and [ are hyperparameters corresponding to

intermediate features. The fused feature H(X) is then
transformed to a fully connected layer, and a softmax function
for hand action prediction.

Fig.3 shows a schematic diagram of the complete workflow
of our proposed method. The network is named Multimodal
RGB-D Flow Network, abbreviated as MRDFNet. As shown
in Fig.3, three streams are built to extract features from
individual modalities, which are then fed to the multimodal
fusion network. Note that the streams for RGB sequences and
depth sequences are based on the single modal feature
extraction network of Sec. III, while the stream for optical flow
stacks is based on ResNet-34 since only motion features are
concerned.
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Fig. 2. Network architecture of the proposed Bi-LSTA.



RGB frames X,
% Conv

Y [—>
]
Appearance Stream
Optical flows X, Convy
—
Motion Stream
Conv
Depth frames X3

Depth Stream Conv

shared

I |\ Fusion |

| ¢ Singlue Modé]
Feature Extraction

Fig. 3. Network architecture of the proposed MRDFNet. The convolutional
blocks for distinctive features share the same structure (different parameters),
while the convolution block for shared feature has a different structure since
there exists an additional average operation over g;(X;) .

V. EXPERIMENTS AND RESULTS

A. Datasets

We evaluate the proposed method on the self-collected
RGB-D Egocentric Manual Operation Dataset in Electrical
Substations (REMOD-ES). The Kinect Azure is used for
collecting registered RGB-D videos. For the purpose of
acquiring egocentric action videos, we mount the sensor on a
helmet and encourage the subject wearing the helmet (camera’s
orientation is roughly coincident with the subject’s gaze) to
perform manual operations with electrical devices as naturally
as possible, which brings greater challenges of shifting
backgrounds and various motion speeds to the task of hand
action recognition. Fig. 4(a)(b) show the equipment and the
condition during data collection. Finally, the dataset contains
12 hand action classes (move electric testing handcart, measure
currency, measure voltage, push button, manipulate air breaker,
manipulate rotary switch, manipulate earth switch, manipulate
isolator, manipulate switch inside an operation cabinet, unlock,
lock, lock pillar) and 124 video clips (2 modalities, 4 operators,
2 substations). Fig. 4(c) shows the visualization of partial
egocentric hand actions with both RGB and depth modalities.
Considering the limited size of the the dataset, we use data
augmentation techniques to improve the sample diversity for
network training, i.e., scale jittering and corner cropping. For
cross validation, all the video clips are divided into 4 splits, of
which 3 splits are sampled for training and the left one for
testing. The average recognition accuracy is reported.

Moreover, a standard first person hand action recognition
dataset, namely THU-READ [15], is also used to validate the
generalization performance of the proposed method on the
daily living scene. The dataset contains 40 hand action classes
and 1920 video clips in total (8 subjects X 2 modalities X 40
classes X 3 repeated times). We follow the cross-subject (CS)
setting as [15] to separate 8 subjects into 4 splits and use
samples from 3 splits for training and the other for testing. The
recognition accuracy on all splits and their average results are
reported respectively.

B. Experimental settings

The training for single modal feature extraction network
consists of two stages. In the first stage, the appearance stream

Fig. 4. Self-collected REMOD-ES. (a) The helmet mounted with a Kinect
Azure sensor. (b) The condition during data collection. (¢) Visualization of
partial egocentric hand actions with both RGB and depth modalities.

was trained for 300 epochs with a learning rate of 10 and
decayed by a factor of 0.1 after 25, 75 and 150 epochs, and the
depth stream was trained for 200 epochs with a learning rate of
107 and decayed by a factor of 0.1 after 25, 75 and 150 epochs.
In the second stage, the network was further trained for 150
epochs with a learning rate of 10 and decayed by a factor of
0.1 after 25 and 75 epochs. For the motion stream with ResNet-
34, the network was trained for 750 epochs with an initial
learning rate of 10 and decayed by a factor of 0.5 after 150,
300 and 500 epochs. We stacked five optical flow images,
calculated using the TV-L1 algorithm [22], together as the
input and obtain an averaged score. The multimodal fusion
sub-network was trained for 50 epochs with an initial learning
rate of 102 and the decay rate per step was set to 0.99.

C. Evaluation on THU-READ

1) State-of-the-art comparison: Our method was compared
against the state-of-the-art methods on Tab. 1. We mainly
compared our approach with several existing multimodal
action recognition methods: ThreeStream [23], TSN [24],
MDNN [15] and CAPF [25]. Following the two stream
architecture, ThreeStream uses three separate CNN networks
for single modal feature extraction and a fully connected layer
for joint learning. TSN uses three individual TSN networks for
single modal feature extraction and also a fully connected layer
for joint learning. MDNN uses three individual TSN networks
for single modal feature extraction and the multi-view learning
for multimodal fusion, which corresponds to the MDNN-+TSN
model in the original work. CAPF performs a decoupling and
recoupling learning as well as a cross-modal adaptive posterior
fusion. From the table, we can see that the proposed method
exceeds SOTA results for egocentric hand action recognition
and achieves the best average accuracy (88.54%) in this
protocol, which demonstrates the robustness of our method to
noisy background and its strong spatio-temporal attention
perception abilities.

2) Multimodal fusion strategy analysis: In order to verify
the importance of the proposed multimodal fusion sub-network,
we have conducted experiments by employing our proposed
MRDFNet with four different fusion strategies. Direct fusion
indicates that the output scores of each feature extraction
stream are averaged and fused. Fully connected layer fusion
indicates that the features of different modalities are output to
the same fully connected layer. Both average fusion and
weighted fusion employ the proposed multimodal fusion



approach of Sec. IV, where the former uses fixed
hyperparameters ( ¢; =a, = a3 =1/6, f=1/2). Tab. 1
also shows the performances of different fusion strategies. It
can be seen that the proposed weighted fusion strategy
outperforms all the other fusion strategies, which validates the
effect of cross-modal fusion where distinctive and shared
features are both explored.

Fig. 5 shows the confusion matrix obtained by the proposed
MRDFNet with the weighted fusion strategy on THU-READ
(split2). The horizontal axis in the confusion matrix indicates
the predicted action category, and the vertical axis indicates the
real action category, and a darker color for the matrix entry
indicates a higher proportion. The points on the diagonal line
indicate the proportion of actions which have been correctly
recognized. It can be seen that most of the action categories are
accurately identified by the proposed method.

3) Parameter analysis: There are several important
parameters in this work. In Eq. 15, the parameters a;(i =
1,2,3) and B are used to control the contributions of

distinctive components and the shared information respectively.

We analyzed how these parameters influenced model
performance. Fig. 6 shows the performance on the CS setting
by assigning different values to these parameters. We set @y =
a, = a3 for simplicity. It can be seen that action recognition
accuracy reaches a peak when the shared information and
distinctive characteristics are simultaneously explored (a; =
a, =a3 =023, =0.3).

D. Evaluation on REMOD-ES

1) State-of-the-art comparison: Our approach is compared
against the state-of-the-art methods on Tab. 2. We only
compared our approach with TSN [24] and MDNN [15] on the
REMOD-ES. From the table, we can see that the proposed
method exceeds the SOTA results and achieves the best
average accuracy (94.74%).

2) Multimodal fusion strategy analysis: Tab. 2 also shows
the performances of four different fusion strategies. It can be
seen that the proposed weighted fusion strategy outperforms all
the other fusion strategies. Moreover, the proposed MRDFNet
with different fusion strategies all exceeds the SOTA results.

TABLE L. COMPARISON OF THE HAND ACTION RECOGNITION
ACCURACY (%) ON THU-READ
Methods CS1 CS2 CS3 CS4  Average
ThreeStream [23] 80.98 80.65 81.67 79.84 80.79
TSN [24] 82.50 81.67 83.33 82.08 82.40
MDNN [15] 83.33 84.67 84.22 82.50 83.68
CAPF [25] - - - - 87.04
MRDFNet (Direct) 87.08 87.50 8625 8791  87.19
MRDFNet (FcNet) 85.00 87.08 8291 8542  85.10
MRDFNet (Average) 87.08 87.92 85.42 86.67 86.77
MRDFNet (Weighted) 88.33 90.83 87.08 87.92 88.54
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Fig. 5. Confusion matrix generated by the proposed MRDFNet with the
weighted fusion strategy on THU-READ (split2).
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Fig. 6. Model performance influenced by different parameter values.

3) Challenges for egocentric hand action recognition in
electrical substation scenario: We find that it is difficult to
distinguish certain manual operations when they share similar
appearance features and motion patterns. For example, as
shown in Fig. 7, the two hand actions manipulate_air_breaker
and manipulate_rotary_switch show subtle differences in terms
of appearance (object and background) and motion. The mild
motion further increases the difficulty for recognition.

VI. CONCLUSION

We propose a learning-based multimodal fusion network
for egocentric hand action recognition. Firstly, spatial and
temporal attention mechanisms are integrated for single modal
feature extraction, which allows adaptively selecting important
regions and key frames for action recognition. Secondly, a
three-stream (appearance, motion and depth) architecture is
built. Finally, a multimodal fusion sub-network is introduced to
explore both distinctive features of each modality and
modality-shared features. Experimental results on different
scenarios demonstrate the proposed method can effectively
encourage the network to extract and fuse discriminative
multimodal spatio-temporal features. In the future, we will



extend our method to untrimmed video clips for both temporal
localization and action recognition.

TABLE IL. COMPARISON OF THE HAND ACTION RECOGNITION
ACCURACY (%) ON REMOD-ES

Methods Average
TSN [24] 73.68
MDNN [15] 78.95
MRDFNet (Direct) 84.21
MRDFNet (FcNet) 78.95
MRDFNet (Average) 84.21
MRDFNet (Weighted) 94.74

Fig. 7. Challenges of different actions with similar appearance and motion
patterns. Left: manipulate_air_breaker. Right: manipulate_rotary_switch.
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