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Figure 1. Taking text descriptions as input, HumanNorm has the capability to generate 3D human models with superior geometric quality
and realistic textures. The 3D human models produced by HumanNorm can be exported as human meshes and texture maps, making them
suitable for downstream applications.

Abstract

Recent text-to-3D methods employing diffusion models001
have made significant advancements in 3D human genera-002
tion. However, these approaches face challenges due to the003
limitations of text-to-image diffusion models, which lack an004
understanding of 3D structures. Consequently, these meth-005
ods struggle to achieve high-quality human generation, re-006
sulting in smooth geometry and cartoon-like appearances.007
In this paper, we propose HumanNorm, a novel approach008
for high-quality and realistic 3D human generation. The009
main idea is to enhance the model’s 2D perception of 3D ge-010
ometry by learning a normal-adapted diffusion model and011
a normal-aligned diffusion model. The normal-adapted dif-012
fusion model can generate high-fidelity normal maps corre-013
sponding to user prompts with view-dependent and body-014
aware text. The normal-aligned diffusion model learns015
to generate color images aligned with the normal maps,016

thereby transforming physical geometry details into realis- 017
tic appearance. Leveraging the proposed normal diffusion 018
model, we devise a progressive geometry generation strat- 019
egy and a multi-step Score Distillation Sampling (SDS) loss 020
to enhance the performance of 3D human generation. Com- 021
prehensive experiments substantiate HumanNorm’s ability 022
to generate 3D humans with intricate geometry and realistic 023
appearances. HumanNorm outperforms existing text-to-3D 024
methods in both geometry and texture quality. 025

1. Introduction 026

Large-scale generative models have achieved significant 027
breakthroughs in diverse domains, including motion [41], 028
audio [1, 26], and 2D image generation [25, 30, 31, 33, 34]. 029
However, the pursuit of high-quality 3D content genera- 030
tion [5, 28, 37, 39] following the success of 2D genera- 031
tion poses a novel and meaningful challenge. Within the 032
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broader scope of 3D content creation, 3D human genera-033
tion [10, 17, 18] holds particular significance. It plays a piv-034
otal role in applications such as AR/VR, holographic com-035
munication, and the metaverse.036

To achieve 3D content generation, a straightforward ap-037
proach is to train generative models like GANs or diffusion038
models to generate 3D representations [2, 4, 12, 43]. How-039
ever, these approaches face challenges due to the scarcity040
of current 3D datasets, resulting in restricted diversity and041
suboptimal generalization. To overcome these challenges,042
recent methods [19, 21, 28] adopt a 2D-guided approach to043
achieve 3D generation. Their core framework builds upon044
pre-trained text-to-image diffusion models and distills 3D045
contents from 2D generated images through Score Distilla-046
tion Sampling (SDS) loss [28]. Leveraging the image gen-047
eration priors learned from large-scale datasets, this frame-048
work enables more diverse 3D generation. However, cur-049
rent text-to-image diffusion models primarily emphasize the050
generation of natural RGB images, which results in a lim-051
ited perception of 3D geometry structure and view direc-052
tion. This limitation can result in Janus (multi-faced) ar-053
tifacts and smooth geometry. Moreover, the texture of the054
3D contents generated by existing methods is sometimes055
not based on geometry, which can result in fake 3D details,056
particularly in wrinkles and hair. Although some 3D hu-057
man generation methods [3, 17, 18] introduce human body058
models such as SMPL [20] for animation and enhancing the059
quality of body details, they fail to address these fundamen-060
tal limitations. Their results still suffer from sub-optimal061
geometry, fake 3D details and over-saturated texture.062

In this paper, we present HumanNorm, a novel approach063
for generating high-quality and realistic 3D human models.064
The core idea is introducing a normal diffusion model to065
enhance the perception of 2D diffusion model for 3D ge-066
ometry. HumanNorm is divided into two components: ge-067
ometry generation and texture generation. For the geome-068
try generation, we train a normal-adapted diffusion model069
using multi-view normal maps rendered from 3D human070
scans and prompts with view-dependent and body-aware071
text. Compared with text-to-image diffusion models, the072
normal-adapted diffusion model filters out the influence of073
texture and can generate high-fidelity surface normal maps074
according to prompts. This ensures the generation of 3D075
geometric details and avoids Janus artifacts. Since normal076
maps lack depth information, we also learn a depth-adapted077
diffusion model to further enhance the perception of 3D ge-078
ometry. The 2D results generated by these diffusion models079
are presented in Fig. 2. The geometry is generated using080
both normal and depth SDS losses, which are based on our081
normal-adapted and depth-adapted diffusion models. Fur-082
thermore, a progressive strategy is designed to reduce geo-083
metric noise and enhance geometry quality.084

As previously discussed, the core challenges for texture085

generation are fake 3D details and over-saturated appear- 086
ances, as illustrated in Fig. 3. To avoid fake 3D details, we 087
learn a normal-aligned diffusion model from normal-image 088
pairs. This model efficiently integrates human geometric in- 089
formation into the texture generation process by taking nor- 090
mal maps as conditions. It accounts for elements such as 091
shading caused by geometric folds and aligns the generated 092
texture with surface normal. To tackle the over-saturated 093
appearances, we introduce a multi-step SDS loss based on 094
our normal-aligned diffusion model for texture generation. 095
The loss recovers images with multiple diffusion steps, en- 096
suring a more natural appearance of the generated texture. 097

The 3D models generated by HumanNorm are presented 098
in Fig. 1. The key contributions of this paper are: 099
1. We propose a method for detailed human geometry gen- 100

eration by introducing a normal-adapted diffusion model 101
that can generate normal maps from prompts with view- 102
dependent and body-aware text. 103

2. We propose a method for geometry-based texture gen- 104
eration by learning a normal-aligned diffusion model, 105
which transforms physical geometry details into realis- 106
tic appearances. 107

3. We introduce the multi-step SDS loss to mitigate over- 108
saturated texture and a progressive strategy for enhanc- 109
ing stability in geometry generation. 110

2. Related work 111

Our study is primarily centered on the realm of text-to-3D, 112
with a specific emphasis on text-to-3D human generation. 113
Here, we revisit some recent work related to our method. 114

Text-to-3D content generation. Early methods, such as 115
CLIP-Forge [35], DreamFields [14], and CLIP-Mesh [23], 116
combine a pre-trained CLIP [29] model with 3D repre- 117
sentations, and generate 3D content under the supervision 118
of CLIP loss. DreamFusion [28] introduces the SDS loss 119
and generates NeRF [22] under the supervision of a text- 120
to-image diffusion model. Following this, Magic3D [19] 121
proposes a two-stage method that employs both NeRF and 122
mesh for high-resolution 3D content generation. Latent- 123
NeRF [21] optimizes NeRF in the latent space using a la- 124
tent diffusion model to avoided the burden of encoding im- 125
ages. TEXTure [32] introduces a method for texture gen- 126
eration, transfer, and editing. Fantasia3D [5] decomposes 127
the generation process into geometry and texture generation 128
to enhance the performance of 3D generation. To address 129
the over-saturation issue, ProlificDreamer [44] proposes a 130
Variational Score Distillation (VSD) loss to produce high- 131
quality NeRF. IT3D [6] introduces GAN loss and leverages 132
generated 2D images to enhance the quality of 3D contents. 133
MVDream [37] proposes a multi-view diffusion model to 134
generate consistent multi-views for 3D generation. Dream- 135
Gaussian [40] uses 3D Gaussian splatting [16] to acceler- 136
ate the generation process. However, these methods are un- 137
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Figure 2. 2D results by normal-adapted and depth-adapted diffusion models. The view-dependent texts like “front view” are utilized
to control the view direction. The body-aware texts like “upper body” are employed to control which body part is generated.

Figure 3. Problems of existing methods.

able to generate high-quality 3D humans, leading to Janus138
artifacts and unreasonable body proportions. Our method139
addresses these issues by introducing normal-adapted dif-140
fusion model that can generate normal maps from prompts141
with view-dependent and body-aware text.142

Text-to-3D human generation. Recently, EVA3D [11],143
LSV-GAN [46], GETAvatar [50], Get3DHuman [45] intro-144
duce GAN-based frameworks to directly generate 3D repre-145
sentations for 3D human generation. AvatarCLIP [10] inte-146
grates SMPL and Neus [42] to create 3D humans, leverag-147
ing CLIP for a supervision. DreamAvatar [3] and Avatar-148
Craft [15] utilize the pose and shape of the parametric149
SMPL model as a prior, guiding the generation of humans.150
DreamWaltz [13] creates 3D humans using a parametric151
human body prior, incorporating 3D-consistent occlusion-152
aware SDS and 3D-aware skeleton conditioning. DreamHu-153
man [17] generates animatable 3D humans by introducing154
a pose-conditioned NeRF that is learned using imGHUM.155
AvatarBooth [47] uses dual fine-tuned diffusion models sep-156
arately for the human face and body, enabling the creation157
of personalized humans from casually captured face or body158
images. The most recent model, AvatarVerse [48], trains a159
ControlNet with DensePose [7] as conditions to enhance the160
view consistency of 3D human generation. TADA [18] de-161
rives SMPL-X [27] with a displacement layer and a texture162
map, using hierarchical rendering with SDS loss to produce163
3D humans. While these methods reduce Janus artifacts164
and unreasonable body shapes by introducing human body165
models, they still produce 3D humans with fake 3D details,166
over-saturation and smooth geometry. Moreover, the intro-167
duction of SMPL presents challenges for these methods in168
generating 3D humans with intricate clothing such as puffy169
skirts and hats. Our method addresses these issues by learn-170
ing normal diffusion model and introducing multi-step SDS171
loss, thereby enhancing the both geometry and texture qual-172
ity of 3D humans.173

3. Preliminary 174

3.1. Diffusion-guided 3D Generation Framework 175

When provided with text y as the generation target, the 176
core of the diffusion-guided 3D generation framework aims 177
to align the images x0 rendered from the 3D represen- 178
tation θ with the generated image distribution p(x0|y) 179
of the 2D diffusion model. Specifically, during the 3D 180
generation process, the rendered images x0 are obtained 181
by randomly sampling cameras c and rendering through 182
a differentiable rendering function g(θ, c). Suppose the 183
rendered images from various angles are distributed as 184
qθ(x0|y) =

∫
qθ(x0|y, c)p(c)dc, the optimization objec- 185

tive of diffusion-guided 3D generation framework can be 186
represented as follows: 187

min
θ

DKL(q
θ(x0|y) ∥ p(x0|y)). (1) 188

Directly optimizing this objective is highly challenging, and 189
recent methods have proposed losses such as SDS [28] and 190
VSD [44] to solve it. To further enhance the quality of ge- 191
ometry, Fantasia3D [5] proposes to disentangle the geome- 192
try θg and appearance θc in the 3D representation θ. In the 193
geometry stage, it aligns qθg (zn0 |y), the distribution of the 194
rendered normal maps zn0 , with the natural image distribu- 195
tion p(x0|y): 196

min
θg

DKL(q
θg (zn0 |y) ∥ p(x0|y)). (2) 197

In the texture stage, the texture of 3D objects is optimized 198
through Eq. (1). 199

3.2. Bottleneck of Diffusion-guided 3D Generation 200

The bottleneck of the diffusion-guided 3D generation lies 201
in the T2I (text-to-image) diffusion model, which confines 202
itself to parameterize the probability distribution of natural 203
RGB images, denoted as p(x0|y). Therefore, current T2I 204
diffusion model lacks the understanding of both view direc- 205
tion and geometry. Consequently, 3D generation directly 206
guided by the T2I diffusion model (Eq. (1)) leads to Janus 207
artifacts and low-quality geometry as shown in Fig. 3 (c-d). 208
Although Fantasia3D disentangles geometry and texture, it 209
still encounters issues originating from the T2I diffusion 210
model in both geometry and texture stages. In the geometry 211

3



CVPR
#9881

CVPR
#9881

CVPR 2024 Submission #9881. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 4. Overview of HumanNorm. Our method is designed for high-quality and realistic 3D human generation from given prompts.
The whole framework consists of geometry and texture generation. We first propose the normal-adapted and depth-adapted diffusion model
for the geometry generation. These two models can guide the rendered normal and depth maps to approach the learned distribution of high-
fidelity normal and depth maps through the SDS loss, thereby achieving high-quality geometry generation. In terms of texture generation,
we introduce the normal-aligned diffusion model. The normal-aligned diffusion model leverages normal maps as guiding cues to ensure
the alignment of the generated texture with geometry. We first exclusively employ the SDS loss and then incorporate the multi-step SDS
and perceptual loss to achieve realistic texture generation.

stage, directly aligning the rendered normal maps distribu-212
tion qθg (zn0 |y) with the natural images distribution p(x0|y)213
is inappropriate since normal maps significantly differ from214
RGB images. This alignment results in geometry distor-215
tions and artifacts, as depicted in Fig. 3 (a). In the tex-216
ture stage, minimizing the divergence between the appear-217
ance distribution qθc(x0|y) and the natural image distribu-218
tion p(x0|y) may lead to fake 3D details due to the absence219
of geometric guidance, as presented in Fig. 3 (b).220

4. Method221

We propose HumanNorm to achieve high-quality and real-222
istic 3D human generation. The whole generation frame-223
work has a geometry stage and a texture stage, as shown in224
Fig. 4. In this section, we first introduce our normal diffu-225
sion model, which consists of a normal-adapted diffusion226
model and a normal-aligned diffusion model ( Sec. 4.1).227
Then in the geometry stage, based on the normal-adapted228
diffusion model, we utilize the DMTET [36] as the 3D rep-229
resentation and propose a progressive generation strategy230
to achieve high-quality geometry generation ( Sec. 4.2). In231
texture stage, building upon the normal-aligned diffusion232
model, we propose the multi-step SDS loss for high-fidelity233
and realistic appearance generation ( Sec. 4.3).234

4.1. Normal Diffusion Model235

In the pursuit of generating a high-quality and realistic236
3D human from a given text target y, the first challenge237
lies in achieving precise geometry generation. This en-238
tails aligning the distributions of rendered normal maps239
qθg (zn0 |c, y) from multiple viewpoints c with an ideal nor-240
mal maps distribution p̂(zn0 |c, y). The next challenge is to241
generate the realistic texture θc while ensuring its coherence242
with the established geometry θg . Therefore, minimizing243

the divergence between the distribution of rendered images 244
qθc(x0|c, y) and an ideal geometry-aligned images distribu- 245
tion p̂(x0|c, θg, y) becomes essential. The ideal optimiza- 246
tion objective is formulated as follows: 247

min
θg,θc

DKL(q
θg (zn0 |c, y) ∥ p̂(zn0 |c, y))︸ ︷︷ ︸

geometry generation objective

+DKL(q
θc(x0|c, y) ∥ p̂(x0|c, θg, y))︸ ︷︷ ︸

texture generation objective

.
(3) 248

However, as discussed in Sec. 3.1, the existing T2I (text- 249
to-image) diffusion model is limited to parameterize the dis- 250
tribution of natural RGB images, denoted as p(x0|y), which 251
deviates significantly from the ideal distributions p̂(zn0 |c, y) 252
and p̂(x0|c, θg, y). To bridge this gap, we propose the incor- 253
poration of normal maps, representing the 2D perception of 254
human geometry, into the T2I diffusion model to approxi- 255
mate p̂(zn0 |c, y) and p̂(x0|c, θg, y). For the geometry com- 256
ponent, we propose to fine-tune the diffusion model, adapt- 257
ing it to generate the distribution of normal map p(zn0 |y). 258
In the context of texturing, we utilize normal maps zn0 as 259
conditions to guide the diffusion model p(x0|zn0 , y) in gen- 260
erating normal-aligned images, which ensures that the gen- 261
erated texture aligns with the geometry. In addition, we fur- 262
ther introduce view-dependent text yv (e.g. “front view”) 263
and body-aware text yb (e.g. “upper body”), serving as an 264
additional condition for the diffusion model. This strategy 265
ensures that the generated images align with the view direc- 266
tion and enables body part generation, as depicted in Fig. 2. 267
The final optimization objective is: 268

min
θg,θc

DKL(q
θg (zn0 |c, y) ∥ p(zn0 |yv,yb, y))+

DKL(q
θc(x0|c, y) ∥ p(x0|zn0 ,yv,yb, y)).

(4) 269

Next, we will introduce our 3D human generation frame- 270
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work and construction of the normal-adapted diffusion271
model and normal-aligned diffusion model used to parame-272
terize p(zn0 |yv,yb, y) and p(x0|zn0 ,yv,yb, y) for geometry273
and texture generation.274

4.2. Geometry Generation275

4.2.1 Normal-adapted Diffusion Model276

Constructing the normal-adapted diffusion model for high-277
quality geometry generation faces several challenges. First,278
existing 3D human datasets are scarce, leading to a limited279
number of normal maps for training. Therefore, we em-280
ploy a fine-tuning strategy to adapt a text-to-image diffu-281
sion model into a text-to-normal diffusion model. Then we282
find the rendered normal maps undergo dramatic changes283
with variations in viewing angles, which results in poten-284
tial overfitting or underfitting issues. To mitigate this effect285
and encourage the diffusion model to focus on perceiving286
the details of geometry, we transform the normal maps zn0287
from the world coordinate to camera coordinates by the ro-288
tation R of the camera parameters. The transformed nor-289
mal maps z̃n0 are used for training of the normal-adapted290
diffusion model. As discussed in Sec. 4.1, we add the view-291
dependent text yv and body-aware text yb as addition con-292
ditions. The fine-tuning process employs this optimization293
objective:294

min
ϕg

Ec,t,ϵ

[
∥ϵϕg (αtz̃

n
0 + σt,y

v,yb, y, t)− ϵ∥22
]
, (5)295

where c is a camera pose, t is a timestep, ϵ denotes noise and296
y is a prompt. σt and αt are the parameters of the diffusion297
scheduler. ϵϕg (·) is the normal-adapted diffusion model.298

SDS loss [28] is widely employed in various diffusion-299
guided 3D generation frameworks. It translates the opti-300
mization objective in Eq. (1) into the optimization of the301
divergence between two distributions with diffusion noise,302
thereby achieving 3D generation. Our geometry is opti-303
mized by the normal SDS loss based on the trained normal-304
adapted diffusion model:305

∇LSDS(θg) =

Ec,t,ϵ

[
ω(t)(ϵϕg

(z̃nt ,y
v,yb, y, t)− ϵ)

∂g(θg, c)

∂θg

]
.

(6)306

where z̃nt corresponds to the rendered normal map z̃0t with307
the noise ϵ at timestep t. ω(t) is the parameters of the dif-308
fusion scheduler. g(θg, c) denotes render the normal map309
at camera pose c from geometry θg . In addition to normal310
SDS loss, we also fine-tune a depth-adapted diffusion model311
by simply changing normal maps to depth maps to calculate312
depth SDS loss. We found the depth SDS loss can reduce313
geometry distortion and artifacts in geometry generation, as314
shown in Fig. 8.315

4.2.2 Progressive Geometry Generation 316

DMTET [36] is used as our 3D representation. To augment 317
the robustness of 3D human generation, we initialize it with 318
a neutral body mesh. We propose a progressive strategy 319
including progressive positional encoding and progressive 320
SDF loss to mitigate geometric noise and enhance the over- 321
all quality of geometry generation. 322

Positional encoding [22, 24] maps each component of 323
input vectors to a higher-dimensional space, thereby en- 324
hancing the 3D representation’s ability to capture high- 325
frequency details. However, we found that the high fre- 326
quency of positional encoding can also lead to noisy sur- 327
face. This is due to the DMTET prioritizing coarse geom- 328
etry during the initial optimization stage, resulting in the 329
failure to translate high-frequency input into geometric de- 330
tails. To solve this, we employ a mask to suppress high- 331
frequency components of positional encoding for SDF func- 332
tion in DMTET during the initial stage. This allows the net- 333
work to focus on low-frequency components of geometry 334
and improving the training stability in the beginning. As 335
training progresses, we gradually reduce the mask for high- 336
frequency components. Thereby enhancing the details such 337
as clothes wrinkle. 338

In addition, the progressive SDF loss is introduced to fur- 339
ther improve the quality of geometry generation. We first 340
record the SDF functions of DMTET before reducing the 341
high-frequency mask, denoted as s(x). Then as training 342
progresses, we add the SDF loss to mitigate strange geom- 343
etry deformations: 344

LSDF (θg) =
∑
x∈P

∥s̃θg (x)− s(x)∥22, (7) 345

where s̃θg (x) is the SDF function in DMTET and P is the 346
set of random sampling points. This strategy can effectively 347
avoid unreasonable body proportions. 348

4.3. Texture Generation 349

4.3.1 Normal-aligned Diffusion Model 350

In texture generation, we fix the geometry parameters θg 351
and introduce the normal-aligned diffusion model as guid- 352
ance. The normal-aligned diffusion model can translate 353
physical geometry details into realistic appearance and en- 354
sure the generated texture is aligned with the geometry. 355
Specifically, we employ the strategy of ControlNet [49] to 356
incorporate transformed normal maps z̃n0 as the guided con- 357
dition of the T2I diffusion model. The training objective of 358
the normal-aligned diffusion model is as follows: 359

min
ϕc

Ec,t,ϵ

[
∥ϵϕc

(αtx0 + σt, z̃
n
0 ,y

v,yb, y, t)− ϵ∥22
]

(8) 360

After training, we propose a multi-step SDS loss based on 361
the normal-aligned diffusion model for photo-realistic tex- 362
ture generation. 363
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Figure 5. Examples of 3D humans generated by HumanNorm. A single view and the corresponding normal map are rendered for
visualization. See supplementary for video results.

4.3.2 Multi-step SDS Loss364

We generate texture in two stages. In the initial stage, we365
employ the vanilla SDS loss of the normal-aligned diffusion366
model ϵϕc for texture generation:367

∇LSDS(θc) =

Ec,t,ϵ

[
ω(t)(ϵϕc(xt, z̃

n
0 ,y

v,yb, y, t)− ϵ)
∂g(θc, c)

∂θc

]
.

(9)368

While SDS loss can lead to over-saturated styles and appear369
less natural as shown in Fig. 7 (c), it efficiently optimizes370
a reasonable texture as an initial value. We subsequently371
refine the texture through multi-step SDS and perceptual372
loss. Different from SDS loss, multi-step SDS loss needs373
multiple diffusion steps to recover the distribution of RGB374
images, which promotes stability during optimization and375
avoids getting trapped in local optima. As a result, the gen-376
erated images appear more natural. To further prevent over-377
saturation effects, the perceptual loss is also applied to keep378
the natural style of the rendering images consistent with the379
images generated by the normal-aligned diffusion model.380
The loss is defined as:381

∇LMSDS(θc) ≈

Ec,t,ϵ

[
ω(t)(h(xt, z̃

n
0 ,y

v,yb, y, t)− x0)
∂g(θc, c)

∂θ

]
+ λpEc,t,ϵ[(

V (h(xt, z̃
n
0 ,y

v,yb, y, t))− V (x0)
) ∂V (x0)

∂x0

∂g(θc, c)

∂θc

]
,

(10)382

where V is the first k layers of the VGG network [38]. 383
h(xt, z̃

n
0 ,y

v,yb, y, t) denotes the multi-step image gener- 384
ation function of the normal-aligned diffusion model. λp is 385
the weights of perceptual loss. 386

5. Experiment 387

5.1. Implementation Details 388

For each prompt, our method needs 15K iterations for ge- 389
ometry generation and 10K iterations for texture genera- 390
tion. The entire generation process takes about 2 hours 391
on a single NVIDIA RTX 3090 GPU with 24 GB memory. 392
The final rendered images and videos have a resolution of 393
1024× 1024. Additional details, including dataset, training 394
settings, and more, can be found in our supplementary. 395

5.2. Qualitative Evaluation 396

The examples of 3D humans generated by HumanNorm is 397
shown in Fig. 5. Furthermore, we present qualitative com- 398
parisons with text-to-3D content methods including Dream- 399
Fusion [28], LatentNeRF [21], TEXTure [32], and Fanta- 400
sia3D [5], as well as text-to-3D human methods including 401
DreamHuman [17] and TADA [18]. 402
Comparison with text-to-3D content methods. As illus- 403
trated in Fig. 6, the results produced by text-to-3D content 404
methods present some challenges. The proportions of the 405
generated 3D humans tend to be distorted, and the texture 406
appears to be over-saturated and noisy. DreamFusion strug- 407
gles to generate full-body humans, often missing the feet, 408
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Figure 6. Comparisons with text-to-3D content methods and text-to-3D human methods. The results of DreamFusion are generated
by unofficial code. The results of DreamHuman are taken from its original paper and project page.

Method FID ↓ CLIP Score ↑
DreamFusion 145.2 28.65
LatentNeRF 152.6 27.42
TEXTure 142.8 27.08
Fantasia3D 120.6 28.47

DreamHuman 111.3 30.15
TADA 120.0 30.65

HumanNorm (Ours) 92.5 31.70

Table 1. Quantitative comparisons with text-to-3D content and
text-to-3D human methods.

even given a prompt like “the full body of...”. In contrast,409
our method delivers superior results with more accurate ge-410
ometry and realistic textures.411

Comparison with text-to-3D human methods. As shown412
in Fig. 6, text-to-3D human methods yield outcomes with413
enhanced geometry due to the integration of SMPL-X and414
imGHUM human body models. In contrast, HumanNorm415
can create 3D humans with a higher level of geometric de-416
tail, such as wrinkles in clothing and distinct facial features.417
Furthermore, text-to-3D human methods also encounter is-418
sues with over-saturation, while our method can generate419
more lifelike appearances thanks to the multi-step SDS loss.420

5.3. Quantitative Evaluation421

Evaluating the quality of generated 3D models quantita-422
tively can be challenging. However, we attempt to assess423

HumanNorm using two specific metrics. Firstly, we com- 424
pute the Fréchet Inception Distance (FID) [9], a measure 425
that compares the distribution of two image datasets. In our 426
case, we calculate the FID between the views rendered from 427
the generated 3D humans and the images produced by Sta- 428
ble Diffusion V1.5 [33]. In total, 30 prompts are used and 429
120 images are rendered or generated for each prompt. Sec- 430
ondly, we utilize the CLIP score [8] to measure the compat- 431
ibility between the prompts with the rendered views of 3D 432
humans. The results are detailed in Tab. 1. As can be ob- 433
served, HumanNorm achieves a lower FID score. This sug- 434
gests that the views rendered from our 3D humans are more 435
closely aligned with the high-quality 2D images generated 436
by the stable diffusion model. Furthermore, the superior 437
CLIP score of HumanNorm indicates our enhanced capa- 438
bility to generate humans that are more accurately aligned 439
with the prompts. Finally, we also conduct a user study to 440
evaluate HumanNorm. The details of this study are pro- 441
vided in our supplementary. 442

5.4. Ablation Studies 443

Effectiveness of normal-adapted and depth-adapted dif- 444
fusion models. In Fig. 7 (a), we show the geometry gen- 445
erated by a text-to-image diffusion model instead of our 446
normal-adapted and depth-adapted diffusion models. One 447
can see that the method struggles to generate facial geome- 448
try, and holes appear on ears. Additionally, the results dis- 449
play smoother clothing wrinkles. The experiment demon- 450
strates that our normal-adapted and depth-adapted diffusion 451
models are beneficial in generating high-quality geometry. 452
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Figure 7. Ablation studies. (a) Without normal-adapted and
depth-adapted diffusion. (b) Without normal-aligned diffusion
model. (c) Without multi-step SDS loss. (d) The full method.

Figure 8. Importance of depth SDS.

Effectiveness of normal-aligned diffusion model. In453
Fig. 7 (b), we experiment with the removal of the normal-454
aligned diffusion model, opting instead for a text-to-image455
diffusion model for texture generation. The resulting tex-456
ture, as can be observed, is somewhat blurry and fails to457
accurately display geometric details. This is because the458
text-to-image diffusion model struggle to align the gener-459
ated texture with geometry. However, using the normal-460
aligned diffusion model, our method manages to overcome461
these limitations. It achieves more precise and intricate de-462
tails, leading to a significant enhancement for the appear-463
ance of the 3D humans.464

Effectiveness of multi-step SDS loss. In Fig. 7 (c), we465
present the result generated when only the SDS loss is used466
in the texture generation. The generated model is noticeably467
over-saturated. However, as shown in Fig. 7 (d), the texture468
generated through multi-step SDS loss exhibits a more real-469
istic and natural color, which underscores the effectiveness470
of the multi-step SDS loss.471

Effectiveness of depth SDS. Since normal maps lack depth472
information, optimizing geometry by only calculating nor-473
mal SDS loss may lead to failed geometry in some regions.474
As shown in Fig. 8 (a), the ear exhibits artifacts when only475
using normal SDS loss. This is because the normal of the476
artifacts is similar to the normal of the head, making it non-477
salient for the normal diffusion model. In contrast, we can478
clearly see the artifacts in the depth map. In Fig. 8 (b), it’s479
evident that the artifacts are reduced when adding the addi-480
tional depth SDS loss based on our depth-adapted diffusion481
model, which demonstrates the effectiveness of introducing482
depth SDS.483

Figure 9. Applications of HumanNorm.

5.5. Applications 484

Text-based Editing. HumanNorm offers the capability to 485
edit both the texture and geometry of the generated 3D hu- 486
mans by adjusting the input prompt. As demonstrated in 487
Fig. 9 (a), we modify the color and style of Messi’s cloth- 488
ing, as well as his hairstyle. 489
Pose Editing. HumanNorm also provides the ability to edit 490
the pose of generated 3D humans by adjusting the pose of 491
the mesh used for initialization and modifying the prompts. 492
The results of pose editing are displayed in Fig. 9 (b). 493
3D Animation. HumanNorm enables the creation of life- 494
like human mesh featuring about 400K distinct faces and 495
intricate 2K-resolution texture map. Based on the high- 496
quality models, we can animate them using full-body mo- 497
tion sequences. Results are presented in Fig. 9 (c-d) 498

6. Conclusion 499

We presented HumanNorm, a novel method for high-quality 500
and realistic 3D human generation. By learning the nor- 501
mal diffusion model, we improved the capabilities of 2D 502
diffusion models for 3D human generation. Utilizing the 503
trained normal diffusion model, we introduced a diffusion- 504
guided 3D generation framework. Additionally, we devised 505
the progressive strategy for robust geometry generation and 506
the multi-step SDS loss to address the over-saturation prob- 507
lem. We demonstrated that HumanNorm can generate 3D 508
humans with intricate geometric details and realistic appear- 509
ances, outperforming existing methods. 510
Limitations and future work. HumanNorm primarily fo- 511
cuses on addressing the geometric and textural challenges 512
present in existing methods. As a result, 3D humans gen- 513
erated by HumanNorm necessitate a rigged human skeleton 514
for 3D animation. In our future work, we plan to incorpo- 515
rate SMPL-X to directly animate 3D humans and improve 516
the quality of body details such as fingers. Additionally, our 517
generated texture may exhibit undesired shading. To ad- 518
dress this, we are considering the use of Physically-Based 519
Rendering (PBR) for material estimation and relighting. 520
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