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Abstract
Existing works on exposure correction have exclusively focused on either under-

exposure or over-exposure. Recent work targeting both under-, and over-exposure achieved
state of the art. However, it tends to produce images with inconsistent correction and
sometimes color artifacts. In this paper, we propose a novel neural network architecture
for exposure correction. The proposed network targets both under-, and over-exposure.
We introduce a deep feature matching loss that enables the network to learn exposure-
invariant representation in the feature space, which guarantees image exposure consis-
tency. Moreover, we leverage a global attention mechanism to allow long-range interac-
tions between distant pixels for exposure correction. This results in consistently corrected
images, free of localized color distortions. Through extensive quantitative and qualitative
experiments, we demonstrate that the proposed network outperforms the existing state-
of-the-art. Code: https://github.com/elientumba2019/Exposure-Correction-BMVC-2021

1 Introduction
Capturing high-quality images that are neither too dark nor too bright requires a perfect
combination of environment lighting and photographic device configuration. Capturing well-
exposed images is achievable in studio-like environments and sometimes in outdoor and even
indoor environments when lighting conditions are satisfactory. However this is seldom the
case, and more often than not, images suffer from either over-exposure or under-exposure.
Such is the case for images captured by casual photographers and hobbyists who do not
always have professional photographic equipment. Exposure errors can occur due to many
factors, including natural ones (Low light environment, bright scenes) and human-caused
ones (error in exposure settings of the camera).

Post-capture Exposure correction enables users to enhance the visual quality of images
after they have been captured. This is crucial as nowadays most people carry camera-
equipped cell phones. Beyond aesthetics, exposure correction is also an important image
processing and computer vision problem whose solutions can be applied to images before
subjecting them to more high-level vision algorithms, and has been shown to improve their
performance [1, 46].

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Afifi, Derpanis, Ommer, and Brown} 2021

Citation
Citation
{Wei, Wang, Yang, and Liu} 2018

https://github.com/elientumba2019/Exposure-Correction-BMVC-2021


2 NTUMBA ET AL..: EXPOSURE CORRECTION VIA CONSISTENCY MODELING

(a) Input (b) MSEC (c) Ours (d) GT (e) Insets

Figure 1: Motivation for our method. Overexposed Input (a). MSEC [1] (b), tends to pro-
duce results with inconsistent correction. Our method (c) produces results with consistent
correction that are closer to the ground truth (d) as can be observed from insets images (e).

Deep Learning based solutions have achieved state-of-the-art results on multiple com-
puter vision benchmarks [29, 39]. These methods for the most part utilize convolutional
neural networks (CNNs) [26] as their main architecture. The majority of existing works
on exposure corrections have been limited to solving exclusively for either under- or over-
exposure. Recent work by Afifi et al. [1], addresses both under, and over-exposure correction
in a single framework. Their method [1] however, tends to produce results that suffer from a
lack of correction consistency (CC), and sometimes color distortions. We define Correction
Consistency as a method’s ability to properly correct all pixels in an image, see Figure 1.
The lack of CC in [1] occurs more frequently when correcting over-exposed images as
opposed to under-exposed images. We hypothesize that the lack of CC in [1] is due to
their framework treating distant pixels of similar properties separately without accounting
for their similarities in color or illumination. Moreover, [1] does not explicitly address the
problem of image exposure consistency (EC), which is to explicitly learn exposure-invariant
deep feature representation in the network.

In this work, we tackle the above challenges and propose a novel neural network ar-
chitecture for exposure correction. Specifically, we use an encoder to extract features from
an input image, and a decoder to recover a well-exposed image. Motivated by the Retinex
model [25] we propose a deep feature matching loss that is used to model image exposure
consistency. Using the proposed feature matching loss in our pipeline, encourages the net-
work to learn an exposure-invariant feature representation. We also leverage a Global Atten-
tion Block (GAB), which we introduce in our learning pipeline. The modeling of long-range
interactions between distant pixels via the GAB, enables our network to produce consis-
tently corrected images. To train our network, we leverage a large-scale dataset [1] which
comes with various exposure levels and diverse scenes. In summary, we make the following
contributions:

• We propose a novel network architecture for exposure correction. Based on the hy-
pothesis that pixels with similar properties should be given equal importance, to allow
consistently corrected images, we design our architecture taking into account the long-
range interactions between distant pixels.

• We propose a deep feature matching loss on encoder-generated features that enables
our network to learn an exposure-invariant feature representation and at the same time
enforce image exposure consistency.

Citation
Citation
{Afifi, Derpanis, Ommer, and Brown} 2021

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{LeCun, Haffner, Bottou, and Bengio} 1999

Citation
Citation
{Afifi, Derpanis, Ommer, and Brown} 2021

Citation
Citation
{Afifi, Derpanis, Ommer, and Brown} 2021

Citation
Citation
{Afifi, Derpanis, Ommer, and Brown} 2021

Citation
Citation
{Afifi, Derpanis, Ommer, and Brown} 2021

Citation
Citation
{Afifi, Derpanis, Ommer, and Brown} 2021

Citation
Citation
{Land} 1977

Citation
Citation
{Afifi, Derpanis, Ommer, and Brown} 2021



NTUMBA ET AL..: EXPOSURE CORRECTION VIA CONSISTENCY MODELING 3

• We perform extensive experiments and demonstrate that the proposed network outper-
forms the state of the art both qualitatively and quantitatively.

2 Related work
Image enhancement. These techniques are designed to enhance the visual quality of

images. Statistic based methods [14, 27, 36, 57, 58] work on the image histogram, which
is manipulated to obtain a higher quality image. Histogram methods essentially alter an
image’s contrast. Lower contrast areas in an image are promoted to higher contrast and con-
trast areas in excess of the desired range are reduced to the desired contrast. Tone curve
adjustment techniques estimate which curve best corresponds to a desirable visual quality.
Whereas earlier solutions are based on processing a single image [52]. Recent learning so-
lutions [16, 32, 33, 51] leverage large datasets that are used for training. We propose a
network architecture for exposure error correction which is different from general image en-
hancement.

Under-exposure correction. These techniques are also known as Low light image en-
hancement methods. They aim to promote a well-exposed image from an underexposed
image. Retinex based methods [25], assume that images can be formulated as a pixel-wise
multiplication of two separate images, namely an illumination map and a reflectance image
[12, 17, 38, 46]. The underexposure problem is therefore reformulated as the recovery of
both illumination and reflectance images that correspond to a well-exposed image. Extreme
low light enhancement methods [3, 4] process raw images and are designed to simulate the
Image processing pipeline. Learning-based solutions for underexposure correction make
use of large-scale datasets and optimize various frameworks. They can either be super-
vised [7, 18, 43, 50, 54, 55], or unsupervised [16, 21]. Unlike these works, our work aims at
promoting a well-exposed image from an under-exposed or over-exposed image in a single
framework.

Over-exposure correction. Over-exposure correction techniques promote an over-exposed
image to a well-exposed one. Over-exposed images suffer from a loss of texture and color
details which make the over-exposed correction problem extremely challenging, requiring
details hallucination. For the most part solutions to over-exposure, correction are cast as
HDR reconstruction [37] where the main goal is to both hallucinate details in clipped pixels
and recover the scene radiance. On one hand, Multi-image image HDR techniques [11, 23,
47, 48, 49] leverage the abundance of data found in multi-exposure images by fusing them to
obtain a correctly exposed HDR image or 8bits image [31]. On the other hand single Image
HDR reconstruction techniques [10, 28, 30, 40] are under-constrained and more challenging
than their multi-images counterpart. They solely rely on hallucinating details in missing re-
gions. Contrary to these works, Our work does not aim at reconstructing scene radiance, nor
hallucinate missing details. Instead, we propose a framework for exposure error correction
treating both under- and over-exposure errors.

Transformers in computer vision. Transformers [42] can model long-range dependen-
cies between elements in a sequence. This makes them able to capture global context. Trans-
formers [42] have recently been successfully applied to vision problems as diverse as Image
classification [8, 56], image generation [6, 34] , image segmentation [5], video segmenta-
tion [9, 44], video action recognition, Object detection [56]. Vision transformers solutions
are applied to images by treating a single image as a sequence of words, which is achieved
by either breaking an image into patches or by using a backbone to first down-sample the
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image then reshape it into a sequence. In this work, we leverage a Global Attention Block
(GAB) which we implement as a stacked transformer layers.

3 Method
Given an input image rendered with the incorrect exposure settings, our goal is to produce a
well-exposed image from the input image. Our solution is inspired by the retinex formation
model [25], defined as follows:

I = R∗S (1)

Where I denotes an image that is formed via a pixel-wise multiplication of R which denotes
the reflectance image, and S which is the illumination map. Under the retinex formation
model, exposure correction is the recovery of either the reflectance image R or the illumi-
nation map S. Unlike previous works [12, 17, 38, 43, 46] that directly estimate R or S ,
we model equation (1) implicitly in our learning pipeline. Specifically, we constrain the
network learning by introducing a deep feature matching loss that is used to model image
exposure consistency in the feature space. In other words, we constrain our network to learn
an exposure-invariant feature representation such that, given images with the same content
but with different exposure, the resulting feature representation is approximately the same.
Our learning scheme is thus analogous to learning a retinex model in deep feature space,
where the exposure-invariant features represent R, and the illumination S is implicitly recov-
ered by the network during the decoding phase. Figure 2 illustrates our learning pipeline.
Note that the proposed method requires multiple exposures (at least two) at training time,
and a single image at inference time. In the following, we present in detail our solution and
training.

E

E
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GAB

GAB

L1 Loss D

LOSS

E Encoder D Decoder GAB Global Attention Block Exposure-invariant features 

Shared Weights

EV
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Figure 2: Training pipeline of our method. Given the images under different exposures,
the shared-weights encoders are used to obtain an exposure-invariant feature representation,
which is then fed to the decoder to recover a well-exposed image. A deep feature matching
loss is used to enforce image exposure consistency across images.

3.1 Consistency modeling
Image Exposure Consistency. Exposure-consistency modeling guarantees that images of
similar content but different exposure, should result in the same well-exposed image. Ex-
posure consistency is achieved via the learning of exposure-invariant deep feature repre-
sentation. Specifically, the input images are fed to the shared-weights encoders for feature
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extraction. Our encoders are composed of a series of Residual Dense Blocks (RDB) followed
by pooling layers. For images that have the same content but different exposure, the deep
features produced by the encoder may vary due to change in illumination. Inspired by the
retinex model [25], we introduce a deep feature matching loss that constrains our network to
learn an exposure-invariant feature representation. For a given image Ik with exposure k, the
encoder φenc encodes Ik into its feature representation e. Our feature loss is defined as:

L f eat =
1
M

M

∑
j=1
‖e− e j‖1 (2)

where L f eat denotes the total loss, M denotes the number of images, and e j denotes the
feature representation of an image I j, that has the same content as Ik but differs in exposure.
Image Correction Consistency. To produce consistently corrected images, our network
needs to adjust global image properties (e.g., color distribution, average brightness) across
multiple distant regions in the image. As shown in Figure 6, for a given image and query
pixel our network needs to attend to distant pixels to complement each other. To model
such long-range interactions between distant pixels, we employ a Global Attention Block
(GAB), which we implement as a series of stacked transformer [42] layers. The input to
the GAB is the deep features from the encoder. These features are collapsed along spatial
dimensions, to produce a N×S feature map, where N =

( H
16 ×

W
16

)
, and S is the dimension of

the embedding. To retain positional information, a Fixed Positional Encoding [42] scheme
is used, where position embeddings are added to each token as follows :

z0 =
[
x1

p,x
2
p; ...;xN

p
]
+ xpos (3)

In equation (3) xi
p ∈ RS are tokens, and xpos ∈ RN×S denotes the position embeddings. The

positional encoding used in this work is represented using sine and cosine functions of dif-
ferent frequencies [42]. We also experimented with learned positional encoding [13] and did
not observe any significant improvement in terms of performance. In our ablation studies,
we empirically demonstrate that the use of a positional encoding scheme results in increased
performance as opposed to not using one. Each transformer layer in the GAB is composed
of L layers of Multi-head Self-Attention, and Multi-Layer Perceptron blocks. The output of
a transformer layer is computed as:

z
′
l = MSA(LN (zl−1))+ zl−1 (4)

zl = MLP
(

LN
(

z
′
l

))
+ z

′
l (5)

y = LN (zl) (6)

where MSA, MLP, and LN denote Multi-Head Attention, Multi-Layer Perceptron, and Layer
Normalization blocks. For a given feature token x, each head h in an MSA attends to distant
pixels via a self-attention mechanism defined as:

α
(h)
i, j = so f tmax j

(
〈W T

h,qxi,Wh,kx j〉
√

k

)
(7)

y j =
H

∑
h=1

W T
c,h

n

∑
j=1

α
(h)
i, j W T

h,vxi (8)
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Where Wq,Wk,Wv and Wc are learned weight matrices. α
(h)
i, j denotes attention weight,

√
k is

a scaling factor and y j is the self-attention output feature. A total of 6 transformer layers are
used in the GAB, each having 8 attention heads and an internal representation of size 512.

To produce a well-exposed image, the updated feature maps from the GAB are first
reshaped back to their original shape, and then subsequently fed to the decoder. The de-
coder is comprised of up-sampling blocks followed by convolutional layers. To recover the
high-frequency details that were lost during the encoding phase, our network uses skip con-
nections between the encoder and the decoder layers. The decoder progressively upsamples
feature maps, until they reach the same resolution as that of the input image, after which a
well-exposed image is produced. See the supplementary materials for details of the network
architecture.

3.2 Loss function
To optimize our network’s parameters, we train our model with a content loss and a percep-
tual loss [22]. While the content loss aims at minimizing the differences between the output
image and the ground truth in image space, the perceptual loss aims at doing the same in
feature space. The content loss is defined as:

Lcontent (I, I∗i ) =
1
n ∑

i
zi

zi =

{
0.5(I− I∗i )

2÷β , if |Ii− I∗i | ≤ β

|Ii− I∗i |−0.5∗β , otherwise
(9)

Where I, and I∗ denote the input image and the corresponding ground truth, n = H×W ×C
denotes the total number of pixels and β is a scaling factor. We set β to a default value of 1.
Equation (9) becomes the Hubert loss [19] function when β is omitted.
The Perceptual loss is defined as :

Lperceptual (I, I∗i ) =
1
n ∑

i
∑

l
‖φl(Ii)−φl(I∗i )‖1 (10)

where φl(·) denotes feature activation at the lth layer of a pre-trained VGG-19 [41] network.
The final loss is the combination of the losses in equations (2), (9) and (10) defined as :

L f inal = Lcontent +λ1 ∗Lperceptual +λ2 ∗L f eat (11)

where λ1 and λ2 are scalar weights to balance the overall loss. We use a value of 1 for λ1
and 0.1 for λ2.

4 Experiment and results
Dataset: We train our network on the exposure correction dataset of Afifi et al. [1]. It comes
with realistically rendered over-exposed and under-exposed images, as well as their corre-
sponding well-exposed ground truths. The dataset is rendered from the MIT-Adobe FiveK
dataset [2] , corrected by 5 experts. Each image comes in five different exposures (EV: -1.5,
-1.0, 0, +1.0, +1.5). A total of 17,675 images are available for training, 750 images for vali-
dation, and 5,905 images for testing.
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Training details: Our network is implemented in PyTorch[35] on an NVIDIA GTX 1080Ti.
We end-to-end optimize our network’s parameters using Adam [24] with beta values 0.9 and
0.999, and a learning rate of 10−4. Five exposures are used during training and a single image
can be used at inference time. We start by training the network on 128x128 randomly se-
lected patches. Once the training curve plateaus, which is when we observe no improvement
on the overall loss for at least ten epochs, we increase the resolution of the patches (256x256,
384x384, 512x512) and continue training until we reach a final resolution of 768x768. We
repeat the same process at each resolution until we reach the final resolution. In total the
network is trained for 300 epochs using mini-batches of size 32.

4.1 Quantitative results
Our method is quantitatively evaluated on the test set of [1]. We use the Peak Signal to
Noise Ratio (PSNR) and the Structural Similarity Index Metric (SSIM) [45]. We compare
our method against previous learning, and non learning method [1, 7, 10, 12, 14, 16, 17, 18,
20, 43, 46, 53, 57]. We average results obtained on each expert test set, and report them
in Table 1. Our methods outperform both methods that deal exclusively with either under,
or over-exposure. It also outperforms the method of Afifi et al. [1], which deals with both
under- and over-exposure correction. Detailed quantitative results on each expert set are
reported in the supplementary material.

Methods Underexposed Overexposed Under/Over exposure
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

HE [14] * 16.576 0.679 16.582 0.683 16.580 0.682
CLAHE [57] * 16.350 0.621 14.808 0.589 15.425 0.602
WVM [12] * 18.615 0.735 13.503 0.657 15.548 0.688
LIME [17] * 14.643 0.671 10.487 0.582 12.150 0.618
HDR-CNN w/RHT [10] 13.589 0.420 13.842 0.486 13.741 0.460
HDR-CNN w/PS [10] 18.467 0.698 16.076 0.680 17.032 0.687
DPED(iPhone) [20] 19.858 0.685 13.883 0.591 16.274 0.629
DPED(BlackBerry) [20] 20.059 0.685 16.444 0.662 17.890 0.671
DPED(Sony) [20] 18.263 0.652 17.627 0.692 17.881 0.676
DPE(HDR) [7] 17.403 0.673 15.408 0.589 16.206 0.623
DPE(S-5K) [7] 18.495 0.677 15.453 0.640 16.670 0.655
DPE(U-5K) [7] 19.720 0.702 16.035 0.661 17.510 0.677
HQEC [53] *+ 16.905 0.706 12.875 0.638 14.487 0.666
RetinexNet[46] + 12.494 0.619 11.059 0.600 11.633 0.607
Deep UPE[43] + 19.106 0.741 11.008 0.573 14.247 0.640
Zero-DCE[16] + 14.964 0.593 11.020 0.519 12.597 0.549
MSEC[1] 19.646 0.737 19.198 0.728 19.377 0.731
Ours 21.126 0.839 21.881 0.866 21.579 0.855

Table 1: Quantitative comparison on the test set of [1]. Methods are compared based on
exposure. * denotes non learning-based methods. S and U stand for Supervised and Unsu-
pervised. + denotes under-exposure correction methods. Our Method achieves higher PSNR
and SSIM.

4.2 Qualitative results
We select three methods for both under-, and over-exposure correction [1, 20, 57] and com-
pare them against our method. Figure 3 and Figure 4 show visual comparisons between the
selected methods and ours. In Figure 3 we perform comparisons in terms of exposure consis-
tency. The well-exposed images obtained from correcting two images of different exposure
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Input CLAHE [57] DHDR [40] MSEC [1] Ours GT

Figure 3: Qualitative comparison on the test set of [1] in terms of Exposure Consistency.
Given two images with the same content but different exposures, our method tends to gener-
ate images with consistent exposure.

but the same content, should be as close as possible to each other and to the ground truth.
Note that our method achieves significantly better results compared to other methods.

In Figure 4 We show results on under-, and over-exposure correction. CLAHE [14] fails
to accurately recover colors for both under-, and over-exposure. DPED [20] produces im-
ages that are darker and contain artifacts for under-exposure correction. MSEC [1] fails to
recover colors and textures details in some regions when correcting under-exposed images,
while producing distorted colors when correcting over-exposed images.

Figure 5 shows results obtained from correcting images captured in the wild using a
Nikon D90 camera. Note that the cost associated with collecting such data at scale is enor-
mous. We therefore only include these two images as a proof of concept, and reserve the
collection of a larger dataset for future work. Images captured with EV:0 are included for
reference only, and should not be taken as ground truths. The results produced by our method
are on par with those of Afifi et al. [1], whose method [1] tends to produce images with color
artifacts as shown in insets. Both our method and [1] tend to produce images with deeper
colors, which is an inherent characteristic of the dataset on which both models were trained.
Our method produces results that are consistently corrected and free of artifacts. Additional
qualitative results are presented in the supplementary materials.

Input CLAHE [57] DPED [20] MSEC [1] Ours GT

Figure 4: Qualitative comparisons on under- (Row1), and over-exposure (Row2) correction
on the test set of [1].
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Input CLAHE [57] DPED [20] MSEC [1] Ours Reference

Figure 5: Qualitative comparisons on real images captured in the wild using a Nikon D90
camera. Top row: EV:-1.5, bottom row:EV:+1.5.

Model Lp RDB GAB PE L f eat PSNR ↑ SSIM ↑
Baseline UNET × × × × × 18.985 0.783
Model1 × × × × 18.724 0.800
Model2 × × × 20.897 0.821
Model3 × × 21.871 0.841
Model4 × 22.317 0.843
Ours 22.816 0.855

Table 2: Ablation studies on the validation set of [1]. RDB denotes Redidual Dense Blocks,
GAB denotes the Global Attention block. PE denotes Positional Encoding. Lp denotes the
perceptual loss and L f eat denotes our deep feature matching loss.Our full model achieves
higher PSNR and SSIM.

4.3 Ablation studies

Loss ablation. To evaluate the contribution of each loss term, we train different models
using different loss combinations and compare them against our full model. Quantitative
results on the validation set are reported in Table 2.
Model ablation. We build a baseline model (Baseline UNET) which is a simple encoder-
decoder with skip connections, to illustrate the contribution of all components in our frame-
work. In the baseline model, we replace all components with standard convolutional layers.
To evaluate the importance of the Global Attention Block (GAB) in our network, we train a
model (Model2) in which the GAB is removed. For a fair comparison against our full model,
we replace the GAB with six convolutional layers with relu activation function. In Table 2
Our full model with GAB achieves superior performance. We also perform an ablation on the
impact of Positional Encoding (PE), by training a model without any PE scheme (Model3).
Our full model with a Fixed Positional Encoding [42] achieves higher PSNR and SSIM com-
pared to its counterpart, as shown in Table 2. In Figure 6 we show the self-attention weights
from the GAB. Given an over-exposed image and a query pixel, the GAB can attend to all
pixels in the image and gives more importance to pixels that are similar to the query pixel in
terms of color or illumination.
Deep features visualization. Exposure consistency modeling implies that given images
sharing the same content but having different exposures, the features extracted from these
images should be as close as possible to each other. In Figure 7 we show the deep features
learned by our network with EC modeling and those of our variant (Model4) without EC
modeling. These features are extracted from our network’s bottleneck, and averaged along
the channel dimension for visualization. The features learned by our model (with EC) are
closer to each other, as can be observed from error maps. Note that error maps are calculated
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by Error(x,y) = |x− y|.

(a) Input (b) Attention Map (d) GT(c) Ours

Figure 6: Visualization of self-attention. Given a query pixel, depicted by the red dot in (a),
the GAB is able to attend to all pixels within the image and attend more to pixels that are
similar to the query pixel in terms of color or illumination (b).

Inputs

W/o EC 

Modeling

W/ EC 

Modeling

EV:-1.5 EV:0 EV:1.5 Error(-1.5, 0) Error(1.5, 0)

Figure 7: Visualization of deep features. Top row: input images sharing the same content but
having different exposures. middle row: features learned without EC modeling (Model4).
bottom row: features learned with EC modeling. The deep features learned by our model (w/
EC) are closer to each other, as shown in error maps (column 4, 5).

5 Conclusion

In this paper, we have presented a new network architecture for exposure correction, that
addresses both under-, and over-exposure. Exposure consistency is modeled by constraining
the network to lean an exposure-invariant feature representation. Moreover, we leverage a
Global Attention Block (GAB) to model the long-range interaction between distant pixels.
This design choice enables the proposed network to generate images that are consistently
corrected and free of artifacts.
Limitations. We observe that our method fails when a given image is extremely under- or
over-exposed with saturated pixels, and/or missing semantic information (see supplementary
materials for visual examples). This limitation is primarily due to our method’s inability to
hallucinate non-existing content. A possible extension could be the inclusion of adversarial
learning [15] within our approach, as it has proven effective in hallucinating plausible con-
tents in images.

Acknowledgements. This work was supported by NSFC under Grant 62031023.

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Qing Wang
Highlight



NTUMBA ET AL..: EXPOSURE CORRECTION VIA CONSISTENCY MODELING 11

References
[1] Mahmoud Afifi, Konstantinos G Derpanis, Björn Ommer, and Michael S Brown.

Learning multi-scale photo exposure correction. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2021.

[2] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. Learning photo-
graphic global tonal adjustment with a database of input / output image pairs. In The
Twenty-Fourth IEEE Conference on Computer Vision and Pattern Recognition, 2011.

[3] Chen Chen, Qifeng Chen, J. Xu, and V. Koltun. Learning to see in the dark. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3291–
3300, 2018.

[4] Chen Chen, Qifeng Chen, M. Do, and V. Koltun. Seeing motion in the dark. 2019
IEEE/CVF International Conference on Computer Vision (ICCV), pages 3184–3193,
2019.

[5] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, E. Adeli, Yan Wang, Le Lu,
A. Yuille, and Yuyin Zhou. Transunet: Transformers make strong encoders for medical
image segmentation. ArXiv, abs/2102.04306, 2021.

[6] Mark Chen, Alec Radford, Jeff Wu, Heewoo Jun, Prafulla Dhariwal, David Luan, and
Ilya Sutskever. Generative pretraining from pixels. In ICML, 2020.

[7] Y. Chen, Yu-Ching Wang, Man-Hsin Kao, and Yung-Yu Chuang. Deep photo en-
hancer: Unpaired learning for image enhancement from photographs with gans. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6306–
6314, 2018.

[8] A. Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, M. Dehghani, Matthias Minderer, G. Heigold, S. Gelly, Jakob
Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. ArXiv, abs/2010.11929, 2020.

[9] Brendan Duke, A. Ahmed, C. Wolf, P. Aarabi, and Graham W. Taylor. Sstvos: Sparse
spatiotemporal transformers for video object segmentation. ArXiv, abs/2101.08833,
2021.

[10] G. Eilertsen, Joel Kronander, G. Denes, R. Mantiuk, and J. Unger. Hdr image recon-
struction from a single exposure using deep cnns. ACM Transactions on Graphics
(TOG), 36:1 – 15, 2017.

[11] Y. Endo, Y. Kanamori, and J. Mitani. Deep reverse tone mapping. ACM Transactions
on Graphics (TOG), 36:1 – 10, 2017.

[12] Xueyang Fu, Delu Zeng, Y. Huang, X. Zhang, and Xinghao Ding. A weighted vari-
ational model for simultaneous reflectance and illumination estimation. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2782–2790,
2016.

[13] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann Dauphin. Con-
volutional sequence to sequence learning. In ICML, 2017.



12 NTUMBA ET AL..: EXPOSURE CORRECTION VIA CONSISTENCY MODELING

[14] R. González and R. Woods. Digital image processing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-3:242–243, 1981.

[15] I. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS,
2014.

[16] C. Guo, Chongyi Li, J. Guo, Chen Change Loy, J. Hou, S. Kwong, and Runmin
Cong. Zero-reference deep curve estimation for low-light image enhancement. 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
1777–1786, 2020.

[17] Xiaojie Guo. Lime: A method for low-light image enhancement. Proceedings of the
24th ACM international conference on Multimedia, 2016.

[18] Xiaojie Guo, Y. Li, and Haibin Ling. Lime: Low-light image enhancement via illumi-
nation map estimation. IEEE Transactions on Image Processing, 26:982–993, 2017.

[19] P. Huber. Robust estimation of a location parameter. Annals of Mathematical Statistics,
35:492–518, 1964.

[20] A. Ignatov, Nikolay Kobyshev, Kenneth Vanhoey, R. Timofte, and L. Gool. Dslr-quality
photos on mobile devices with deep convolutional networks. 2017 IEEE International
Conference on Computer Vision (ICCV), pages 3297–3305, 2017.

[21] Yifan Jiang, Xinyu Gong, Ding Liu, Y. Cheng, Chen Fang, X. Shen, Jianchao Yang, Pan
Zhou, and Zhangyang Wang. Enlightengan: Deep light enhancement without paired
supervision. IEEE Transactions on Image Processing, 30:2340–2349, 2021.

[22] J. Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style trans-
fer and super-resolution. ArXiv, abs/1603.08155, 2016.

[23] N. Kalantari and R. Ramamoorthi. Deep high dynamic range imaging of dynamic
scenes. ACM Transactions on Graphics (TOG), 36:1 – 12, 2017.

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2015.

[25] E. Land. The retinex theory of color vision. Scientific American, 237 6:108–28, 1977.

[26] Y. LeCun, P. Haffner, L. Bottou, and Yoshua Bengio. Object recognition with gradient-
based learning. In Shape, Contour and Grouping in Computer Vision, 1999.

[27] Chulwoo Lee, C. Lee, and C. Kim. Contrast enhancement based on layered difference
representation of 2d histograms. IEEE Transactions on Image Processing, 22:5372–
5384, 2013.

[28] Siyeong Lee, Gwon Hwan An, and Suk-Ju Kang. Deep recursive hdri: Inverse tone
mapping using generative adversarial networks. In ECCV, 2018.

[29] Tsung-Yi Lin, M. Maire, Serge J. Belongie, James Hays, P. Perona, D. Ramanan, Piotr
Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.



NTUMBA ET AL..: EXPOSURE CORRECTION VIA CONSISTENCY MODELING 13

[30] Y. Liu, Wei-Sheng Lai, Yu-Sheng Chen, Yi-Lung Kao, Ming-Hsuan Yang, Yung-Yu
Chuang, and J. Huang. Single-image hdr reconstruction by learning to reverse the cam-
era pipeline. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1648–1657, 2020.

[31] T. Mertens, J. Kautz, and F. V. Reeth. Exposure fusion: A simple and practical alterna-
tive to high dynamic range photography. Computer Graphics Forum, 28, 2009.

[32] S. Moran, Pierre Marza, Steven G. McDonagh, Sarah Parisot, and G. Slabaugh.
Deeplpf: Deep local parametric filters for image enhancement. 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 12823–12832,
2020.

[33] Jongchan Park, Joon-Young Lee, Donggeun Yoo, and In-So Kweon. Distort-and-
recover: Color enhancement using deep reinforcement learning. 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 5928–5936, 2018.

[34] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam M. Shazeer,
Alexander Ku, and Dustin Tran. Image transformer. ArXiv, abs/1802.05751, 2018.

[35] Adam Paszke, S. Gross, Francisco Massa, A. Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Z. Lin, N. Gimelshein, L. Antiga, Alban Desmaison, Andreas Köpf,
Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In NeurIPS, 2019.

[36] S. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. H.
Romeny, and J. B. Zimmerman. Adaptive histogram equalization and its variations.
Graphical Models graphical Models and Image Processing computer Vision, Graphics,
and Image Processing, 39:355–368, 1987.

[37] E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, W. Heidrich, and K. Myszkowski.
High dynamic range imaging: Acquisition, display, and image-based lighting. 2010.

[38] Xutong Ren, W. Yang, W. Cheng, and Jiaying Liu. Lr3m: Robust low-light enhance-
ment via low-rank regularized retinex model. IEEE Transactions on Image Processing,
29:5862–5876, 2020.

[39] Olga Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Zhiheng Huang,
A. Karpathy, A. Khosla, Michael S. Bernstein, A. Berg, and Li Fei-Fei. Imagenet large
scale visual recognition challenge. International Journal of Computer Vision, 115:
211–252, 2015.

[40] Marcel Santana Santos, Ing Ren Tsang, and N. Kalantari. Single image hdr recon-
struction using a cnn with masked features and perceptual loss. ACM Transactions on
Graphics (TOG), 39:80:1 – 80:10, 2020.

[41] K. Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2015.

[42] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. ArXiv,
abs/1706.03762, 2017.



14 NTUMBA ET AL..: EXPOSURE CORRECTION VIA CONSISTENCY MODELING

[43] R. Wang, Q. Zhang, Chi-Wing Fu, Xiaoyong Shen, W. Zheng, and J. Jia. Underexposed
photo enhancement using deep illumination estimation. 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 6842–6850, 2019.

[44] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen, B. Cheng, H. Shen,
and Huaxia Xia. End-to-end video instance segmentation with transformers. ArXiv,
abs/2011.14503, 2020.

[45] Zhou Wang, A. Bovik, H. Sheikh, and Eero P. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing,
13:600–612, 2004.

[46] Chen Wei, W. Wang, W. Yang, and Jiaying Liu. Deep retinex decomposition for low-
light enhancement. In BMVC, 2018.

[47] Shangzhe Wu, J. Xu, Yu-Wing Tai, and C. Tang. Deep high dynamic range imaging
with large foreground motions. In ECCV, 2018.

[48] Qingsen Yan, Dong Gong, Qinfeng Shi, A. V. Hengel, Chunhua Shen, I. Reid, and
Y. Zhang. Attention-guided network for ghost-free high dynamic range imaging. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
1751–1760, 2019.

[49] Qingsen Yan, Lei Zhang, Yu Liu, Yu Zhu, Jinqiu Sun, Qinfeng Shi, and Yanning Zhang.
Deep hdr imaging via a non-local network. IEEE Transactions on Image Processing,
29:4308–4322, 2020. doi: 10.1109/TIP.2020.2971346.

[50] W. Yang, Shiqi Wang, Y. Fang, Yue Wang, and Jiaying Liu. From fidelity to per-
ceptual quality: A semi-supervised approach for low-light image enhancement. 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
3060–3069, 2020.

[51] Runsheng Yu, Wenyu Liu, Yasen Zhang, Zhi Qu, D. Zhao, and Bo Zhang. Deepexpo-
sure: Learning to expose photos with asynchronously reinforced adversarial learning.
In NeurIPS, 2018.

[52] L. Yuan and Jian Sun. Automatic exposure correction of consumer photographs. In
ECCV, 2012.

[53] Qing Zhang, Ganzhao Yuan, Chunxia Xiao, L. Zhu, and W. Zheng. High-quality ex-
posure correction of underexposed photos. Proceedings of the 26th ACM international
conference on Multimedia, 2018.

[54] Yonghua Zhang, Jiawan Zhang, and Xiaojie Guo. Kindling the darkness: A practical
low-light image enhancer. Proceedings of the 27th ACM International Conference on
Multimedia, 2019.

[55] Minfeng Zhu, P. Pan, W. Chen, and Y. Yang. Eemefn: Low-light image enhancement
via edge-enhanced multi-exposure fusion network. In AAAI, 2020.

[56] X. Zhu, Weijie Su, Lewei Lu, Bin Li, X. Wang, and Jifeng Dai. Deformable detr: De-
formable transformers for end-to-end object detection. ArXiv, abs/2010.04159, 2020.



NTUMBA ET AL..: EXPOSURE CORRECTION VIA CONSISTENCY MODELING 15

[57] K. Zuiderveld. Contrast limited adaptive histogram equalization. In Graphics Gems,
1994.

[58] T. Çelik and T. Tjahjadi. Contextual and variational contrast enhancement. IEEE
Transactions on Image Processing, 20:3431–3441, 2011.


