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Abstract—This paper presents a learning-based novel view
synthesis (NVS) approach from wide-baseline image pairs. In-
spired by prior work, we first predict a depth probability
volume which represents the scene structure as a set of depth
probability layers (DPLs) within a reference view frustum. To
reduce geometric uncertainty in ambiguous regions between
input images, a multi-scale cost aggregation network is proposed
to generate the DPLs for both input views without supervision.
Furthermore, to mitigate the depth discretizaiton artifacts in
distant views, we calculate the disparity map of the target view by
passing the warped DPLs onto the target view to a CNN-based
fusion network. Finally the predicted view could be obtained
by incorporating the disparity map, warped input images and
the confidence prior together. The proposed method improves
the performance on challenging scenarios such as texture-less
or non-textured regions, occlusion boundaries, non-Lambertian
surfaces, and distant viewpoints. Experimental results show
that our method achieves state-of-the-art view interpolation and
extrapolation results on RealEstate10K mini dataset.

Index Terms—view synthesis, sparse views, multi-scale cost
aggregation, wide baseline, confidence prior

I. INTRODUCTION

NVS is a classic problem in vision and graphics, from
which one can generate any view within an appropriate region
given a set of input views. Rendering novel views could
offer computational photographic results with various visual
effects, such as defocus, 3D movies, 3D Ken Burns and so on.
Meanwhile, view synthesis techniques can be used to generate
realistic free view videos for virtual reality and augmented
reality. Image-based rendering (IBR) with sparse input images
has made remarkable progress in past several years due to
the emergence of deep learning and the popularity of portable
photographic equipments.

There are several major issues in NVS. First, the ambiguity
problem poses serious challenges for scene structure estima-
tion as the baseline expands. For repeated texture or texture-
less regions, it is difficult to estimate correspondence solely us-
ing appearance similarity. Texture tearing easily occurs under
such circumstances. Appearance inconsistency is another more
serious problem usually caused by varying illumination and
occlusion across views. Such inconsistency will lead to severe
artifacts at non-Lambertian and occlusion boundary areas.

The work was supported by NSFC under Grant 61801396 and 62031023.

Fig. 1. Given two images taken from distant viewpoints, our algorithm
predicts a DPL-based scene representation that can render view interpolation
and extrapolation. The left column: input image pair. The middle column:
ground truth (top) and predicted disparity map (bottom). The right column:
predicted target views by MPI [1] (top) and our method (bottom).

Second, unobserved regions in the target view. Generally,
imprecise sampling or disocclusions will result in holes in the
synthesized view. A post-processing optimization is generally
needed to fill the holes.

In this paper, we propose a novel learning-based framework
for NVS given an image pair. As shown in Fig. 1, our method
outperforms prior work in two specific ways: (1) geometric un-
certainty in ambiguous regions are mitigated, such as texture-
less or non-textured regions, occlusion boundaries, and non-
Lambertian surfaces, (2) noticeable visual artifacts produced
by predicting dis-occluded scene contents in previous methods
are alleviated (e.g. the gray sofa at the bottom-left corner). To
reduce geometric uncertainty in ambiguous regions between
input images, we design a multi-scale cost aggregation net-
work to estimate the DPLs for both input views. Then, given
camera parameters, we feed the warped DPLs of input views
onto the target view to a CNN to generate the DPLs of the
target view. The reconstructed DPLs are used to calculate a
disparity map to reduce the depth discretizaiton artifacts in
distant views. By combining the disparity map, warped input
images and a confidence prior, the fusion network further
learns to generate the synthesized novel view with realistic
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visual effects.
In summary, the main contributions of this paper include:
(1) A novel DPL-based view synthesis solution is proposed,

which achieves high quality view interpolation and extrapola-
tion results even on challenging scenarios.

(2) The multi-scale cost aggregation network is designed
for estimating dense and structure-maintained depths without
supervision, which mitigates geometric uncertainty in ambigu-
ous regions.

(3) A confidence prior is deployed to provide guidance for
the fusion network to predict dis-occluded contents and correct
inaccurate estimation in the target view.

II. RELATED WORK

There is a large literature on NVS and image-based ren-
dering. In this section, we discuss the most relevant research
works to our method.

A. Traditional Methods

Early methods [2], [3] directly study the combination of
input images to generate novel views when the structure
information is available. Clearly, structure estimation is an in-
separable part of view synthesis. However it is difficult to build
pervasive mixture models for complex scenes. For searching
more accurate geometric correspondences, Chauraisa et al.
[4] estimate scene depths based on over-segmentation and
then project the super pixels to the target view to perform
multi-view fusion. However, the spatial discreteness from
over-segmentation may cause semantic tearing or structural
distortion. By defining scenario goals, Hoiem et al. [5]
propose a photo pop-up method using a sparse structure model.
Woodford et al. [6] exploit multi-labels conditional random
fields to estimate both depths and colors of novel views.

Many view synthesis methods [4], [7]–[9] follow the frame-
work where the geometry structure for each input is estimated
first and the novel view is then rendered by multi-view fusion.
However, it is still difficult to build pervasive models to handle
the ambiguity in complex scenes with traditional methods.

B. Learning-based Methods

Recent work has demonstrated the effectiveness of deep
learning for NVS. Flynn et al. [10] treat the NVS task as the
blending of multiple color layers and selection volumes. Zhou
et al. [11] directly learn the appearance flow between input
and output views. Lacking reasoning about the scene structure,
these methods may cause structure distortion and detail blur.
To learn a more accurate depth map, Kalantari et al. [12]
use two convolutional neural networks (CNNs) to estimate
depths and pixel colors of the target image respectively. They
apply the shifting operation on the source images at each
disparity level to estimate pixel correspondences which leads
to more robust estimation of target depths. However, the
correspondences are weakened by network convolution and
become unreliable as the baseline expands. Although another
CNN is adopted for error correction and occlusion areas, the
correction itself is an ill-posed problem.

To handle this problem, many researchers [1], [13]–[16]
propose the layer-based representation, i.e. a distribution over
depth, for the scene structure, which is capable of representing
geometric uncertainty in ambiguous regions [15]. Tulsiani et
al. [14] attempt to learn layered depth images (LDIs) for
the scene. However, under the supervision of view synthesis,
it is difficult to predict LDIs without explicit corresponding
relationship. Zhou et al. [1] predict a Multi-Planar Image
(MPI) composed of RGB and alpha layers from two input
images directly via a learned feed-forward network. The
method passes the input images to the network as a plane
sweep volume (PSV) which removes the need to explicitly
supply the camera pose, and also allows the network to more
efficiently determine correspondences between images. Later,
NVS are extended to the extrapolation regime based on MPI
[15], [17]. However, such networks have no intrinsic ability
to understand visibility between input views and the predicted
MPI, instead they rely on the network layers to learn geometry.

To overcome this, Flynn et al. [16] consider the differ-
entiable inverse problem of generating MPI and present a
gradient-learning method. Tucker et al. [18] further apply
MPI to the single-view synthesis problem. Given extra point
clouds for normalization and supervision, discrete MPIs are
fused to generate a disparity map. Choi et al. [13] predict
depth probability volumes of the target view with an image
refinement network [19]. They obtain a robust estimate of
scene structure from cost volumes in high dimensions, which
provides more robust correspondences but ignores low level
details. Shi et al. [20] exploit multi-scale VGG features to re-
store high frequency details after depth image based rendering
(DIBR), which depends on accurate depth estimation.

Instead of solely depending on single-scale features, we
aggregate multi-scale explicit geometric correspondences for
more robust scene structure estimation. To our best knowledge,
Xu et al. [21] adopts a similar multi-scale aggregation idea
for disparity estimation. However, their method is proposed
to remove the 3D convolution and limited to stereo matching
with supervision, which significantly differs from our method.

III. METHODOLOGY

A. Overview

Generally, given two input images I1 and I2 taken from two
cameras C1 and C2 respectively, our goal is rendering arbitrary
novel views, including view interpolation and extrapolation
within a certain range. Let K1 and K2 represent the intrinsic
camera parameters of C1 and C2 respectively. By regarding the
camera coordinate of C1 as the world coordinate, the extrinsic
parameters comprising a rotation matrix and a translation
vector for C2 is [R t]. In this work, we consider a simplified
case that the input image pair is taken from one dynamically
moving camera, therefore their intrinsic camera parameters are
the same, which can be referred as K.

Fig. 2 depicts the proposed framework. Firstly, the DPLs for
both I1 and I2 are estimated by a well-designed multi-scale
cost aggregation network. Then the DPLs of the target view
can be obtained by fusing warped DPLs from each input view
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using a full convolution network, in which layered confidence
priors are adopted to guide this process. Moreover, we choose
the fusion way of [18] to obtain a disparity map at the target
location, by which I1 and I2 are backward projected to the
target view. Finally, a confidence prior volume is calculated to
blend warped synthesized views for further optimization.

B. Depth Estimation

1) Definition of DPLs: Inspired by [13], we exploit the
feasibility of using layered depth probability to estimate the
scene structure. The major difference with [13] is that the our
layers are essentially taken from the alpha layers of MPI [1],
and the scene could be deconstructed using less such layers.
The DPL volume consists of a stack of depth probability
layers pl ∈ RH×W uniformly sampled according to disparity
(inversely proportional to depth):

DPLs = {p1,p2, ...,pD} , (1)

where D denotes the number of layers. Note that, the smaller
the subscript of a layer, the farther the layer to the image plane.

By regarding the image pixel as a light ray emitting from the
corresponding scene point, we can calculate a soft probability
distribution along the depth direction, i.e. the z-axis of the
camera coordinate. The depth value with the highest proba-
bility indicates the real depth of the scene point. In stereo
matching, this probability is inversely proportional to the cost
volume [22]. Here we formate the DPL prediction problem as
a process of multi-scale cost calculation and aggregation.

2) Multi-scale cost aggregation: It is well known that
repeated textures, occlusion boundaries, non-Lambertian sur-
faces tend to deteriorate correctly matched similarity mea-
sures and introduce more ambiguity as the baseline increases
(Fig. 3). To address this problem, we propose a robust multi-
scale cost aggregation network for estimating DPLs. For an
input image, we extract two feature levels from a feature
pyramid network (FeaEx) composed of two downsampling
layers and the Atrous Spatial Pyramid Pooling (ASPP) module
similar to DeepLab V3 [23]:{

F 2
i ,F

3
i

}
= FeaEx(Ii), i = 1, 2. (2)

where F 2
i ∈ RH

2 ×
W
2 , F 3

i ∈ RH
4 ×

W
4 are the feature maps with

different resolutions, which represent the characteristic space
on two different scales.

To estimate depth probability volumes combing I1 and
I2, for a certain scale s, we apply the backward projection
operation on the feature maps of I2 (BackPro) to get the re-
projected feature volume {F̃ s

2→1} by stacking all the feature
maps over the feature and depth dimensions together:

{
F̃ s
2→1

}
= Stack {BackPro(F s

2 ,K
s,R, t, dl)l=1:Ds

} , s = 2, 3,

(3)
where Ks is the intrinsic matrix at scale s, dl denotes the
depth value of layer l. The number of depth layers Ds at scale

s meets Ds =
D3

2(s−3)
. In this way, the feature volume {F̃ s

2→1}

takes the dimensions [
H

2(s−1)
,

W

2(s−1)
,
D3

2(s−3)
,

C

2(s−1)
], where

C denotes the number of feature maps in the first convolutional
layer. To enable identical dimensions with {F̃ s

2→1}, we du-
plicate F s

1 to {F̃ s
1 } at different disparities. Instead of directly

subtracting two volumes, we adopt the concatenation operation
to aggregate corresponding features across scale using

Cs
1 = Concat(F̃ s

2→1, F̃
s
1 ), s = 2, 3. (4)

For more accurate and smoother DPLs, we exploit a 3D
CNN and a channel attention module to aggregate contextual
information for different dimensions and simultaneously learn
the weights among the feature dimension as show in Fig. 2.
This module is abbreviated as CA. We aggregate the cost
volume C̃s

1 at scale s by

C̃s
1 = CA(Cs

1), s = 2, 3. (5)

Furthermore, upsampled C̃3
1 and C̃2

1 are concatenated as
the input to another CA module and the DPLs of I1 could be
obtained by:

Cfin
1 = CA

(
Concat(C̃2

1 , C̃
3
1 ↑)

)
, (6)

{
p1
1, ...,p

1
D1

}
= Cfin

1 ↑ . (7)

Due to the inverse relation between cost and probability,
after applying the activation function tanh, DPLs will take
negative values of the original results. Similarly, we can
compute the DPLs of I2 by exchanging input pairs following
the above process f :

{
p2
1, ...,p

2
D1

}
= f (I2, I1) . (8)

3) Warping of DPL: To render a novel view I ′, of which
the intrinsic and extrinsic camera parameters are represented
by K ′ and [R′ t′] respectively, each layer in the DPLs of the
input view is warped to the synthesized view as follows:

p̃1
l = Warp

(
p1
l , dl

)
, p̃2

l = Warp
(
p2
l , dl

)
, l = 1, ...., D1.

(9)
We adopt the homography-based inverse warping on each
depth layer. The target pixel (ut, vt) is estimated by bilinearly
sampling from the neighbors of the source pixel (us, vs)
computed as:usvs

1

 ∼Ks

(
Rt −

ttn
>

dl

)
K−1t

utvt
1

 , (10)

where Ks and Kt are the source and target camera intrinsics,
Rt and tt are the rotation matrix and translation vector of the
target view with respect to the source view respectively. The
vector n = (0 0 1)> is the normal vector of the depth plane.
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Fig. 2. Overview of the proposed end-to-end framework for synthesizing a novel view within or beyond the baseline given a stereo input. The multi-scale
cost aggregation network is used to estimate the DPLs for each input. The DPLs are then projected to the target view and further blended through the fusion
network to generate the disparity map of the target view. Finally, warped results using the disparity map are merged to obtain the final predicted view under
the guidance of the prior information.

Fig. 3. Challenging situations for correspondence estimation as baseline in-
creases. (a) Ambiguity caused by repeated and textless texture. (b) Occlusions.
(c) Specular reflection of non-Lambertian surfaces. The dark green point is
the projection of the green point in the left view. The rectangle marked in
dotted lines represents searching area.

4) Fusion and composition: A learning-based fusion mod-
ule (Fus) is proposed to merge p̃1

l and p̃2
l . To make the fusion

results more reliable, we calculate a fusion prior ml for each
layer by combining camera parameters and the Mean Squared
Error (MSE) value of t′, tloss, as follows:

ml = e
−
tlossfx
dl , l = 1, ...., D1, (11)

where fx is the focal length. tloss measures the position rela-
tion in the physical space, which is converted to the pixel space
by Eq. 11. Then, a fusion mask volume M ∈ RH×W×D1 is
learned by the fusion module using

M = Fus
({

p̃1
l , p̃

2
l ,ml

}
l=1:D1

)
. (12)

After obtaining the fusion mask volume M , the DPLs of I ′

is calculated by{
p′1, ...,p

′
D1

}
= M⊗

{
p̃1
1, ..., p̃

1
D1

}
+(1−M)⊗

{
p̃2
1, ..., p̃

2
D1

}
,

(13)
where ⊗ denotes the dot production operation. Based on the
DPLs of I ′, the disparity map Disp of the synthesized view
can be computed using the over operation [1], [18], [24]:

Disp =

D1∑
l=1

(
d−1l p′l ⊗

D1∏
k=l+1

(1− p′k)

)
. (14)

C. View Reconstruction

Given the disparity map Disp, we can backward project
the target pixel (u′, v′) in I ′ to the input image to find the
corresponding pixel. Taking I1 for an example, the relation is
computed as follows:u1v1

1

 ∼K

R′K ′−1

u′v′
1

+ t′Disp(u′, v′)

 , (15)

where (u1, v1) denotes the computed corresponding pixel in
I1, and Disp(u′, v′) is the disparity value of (u′, v′).

The reconstructed target images I ′1 and I ′2, which are
generated from I1 and I2 respectively, are still pretty rough
due to inaccurate depths and disoccluded areas. Therefore, we
adopt the same network structure in Eq. 12 to directly predict
the reconstructed image Ĩ ′ as described in [12]. Moreover, we
use the confidence prior matrix Cp ∈ RH×W calculated using
the camera parameters and disparities similar to Eq. 11, in
which the disparity map Disp is used for correcting errors
caused by inaccurate depths or disocclusions:

Cp = e−tlossfxDisp, (16)
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Ĩ ′ = Fus (I ′1, I
′
2,Cp,Disp) . (17)

D. Losses

Our total loss is composed of a view synthesis loss and a
smooth loss [18]:

L = Lvgg + Lsmooth. (18)

Many previous similar works [1], [15], [20] have shown
that the perceptual loss helps improve the performance over
the pixel-level reconstruction loss and the same is true for
our work. Therefore, we use the perceptual loss for layers
from VGG-19 [25], where the implementation is similar to
Zhou et al. [26]. Moreover, there exists a variety of losses
for smooth depth preiction [27]–[29]. However, these smooth
losses may be unconvincing without the guidance. On the
contrary, we choose the smooth loss described in [18], which
could smooth small gradient regions and enable large gradient
regions aligned to image edges:

E = min

(
G(I ′)

emin ×max(x,y)G(I ′)
,1

)
, (19)

where the operation G(·) is the gradient sum across all
channels and emin is the fraction of the maximum gradient.
E is actually a source edge mask used to distinguish between
large gradient and small gradient regions in the target image.

The smooth loss for the target view can be defined as
follows by combing the source edge mask E,

Lsmooth
t =

1

N

∑
(x,y)

(max (G(Disp)− gmin, 0)� (1−E)) ,

(20)
where � is the Hadamard product and gmin is the threshold
for gradient. The above loss could penalize large gradient areas
in the disparity map for small gradients in the target image.
Similar to [18], here we set emin = 0.1 and gmin = 0.05.

When calculating the target DPLs, the smooth loss may
effect the consistency of DPLs between the source view and
the target view. Therefore, we generate the disparity map
Disp1 for I1 as well according to Eq. 14 and smooth it in
the same way. Our final smooth loss can be computed as:

Lsmooth = αLsmooth
t + βLsmooth

1 , (21)

where α and β are weight coefficients.
The pseudocode of our proposed view synthesis is described

in Algorithm 1.

IV. EXPERIMENTAL RESULTS

The following section presents quantitative and qualitative
evidences to validate the benefits of our method. We adopt two
well-known objective image quality metrics, the peak-signal-
to-noise ration (PSNR) as well as the structural similarity
index measure (SSIM) for quantitative analysis. For both
PSNR and SSIM, a higher value indicates that the image is of
higher quality and vice-versa.

Algorithm 1 DPL-based Free View Synthesis
Input: Images pair I1, I2 with known camera parameters K,

R, t, the camera parameters of the synthesized view K ′,
R′, and t′

Output: A novel image Ĩ ′ at the target location
1: for each input image Ii, i = 1, 2 do
2: generate

{
pi
1, ...,p

i
D1

}
according to Eq.1-8

3: warp
{
pi
1, ...,p

i
D1

}
to
{
p̃i
1, ..., p̃

i
D1

}
of the target view

according to Eq.9-10
4: end for
5: calculate the fusion mask volume M by Eq.11-12
6: merge

{
p̃i
1, ..., p̃

i
D1

}
to get

{
p′1, ...,p

′
D1

}
using M ac-

cording to Eq.13
7: calculate the disparity map Disp for the target view refer

to Eq.14
8: for each input image Ii do
9: obtain I ′i by backward warping Ii with Disp refer to

Eq.15
10: end for
11: calculate the confidence prior Cp by Eq.16
12: merge I ′1 and I ′2 guided by Cp and Disp to predict Ĩ ′

refer to Eq.17
13: return Ĩ ′

A. Dataset

We train and evaluate our method on the dataset extracted
from the Real Estate 10K dataset [1] called Real Estate Mini
(REM) dataset, consisting of 2549 sequences for training
and 85 sequences for testing with known camera pose for
each video frame. Compared to other datasets, REM involves
more complex and varied scenarios, such as indoor, outdoor,
mirror objects, fine structured object and so on. We generate
training triplets following the method described in [1] by
randomly sampling two source frames and a target frame
from a randomly chosen video. The target view could be
located within or beyond the baseline, which demonstrates the
capacity of the proposed method for both view interpolation
and extrapolation. The results are averaged over randomly
sampled 1000 test triplets from the whole testing sequences.

B. Training Details

We specify the minimal number of depth layers D3 = 16 for
the nearest depth plane d16 = 1m to the farthest plane d1 =
100m. The weight coefficients α and β in Eq. 21 are set to 0.5
and 0.2 respectively. During training, the spatial resolution of
input images is 192×192, however our model could be applied
to arbitrary resolutions due to the full convolutional network.
In order to improve the convergence speed and accuracy of
our model, we initialize the network parameters using Xavier
method [30] and adopt the ADAM optimizer [31] with the
learning rate 0.00001, β1 = 0.9, β2 = 0.999. Due to the
equipment memory limit, we set the batch size to be 1. The
whole training process takes about 24 hours on 6 GTX 1080ti
GPUs with the Tensorflow framework.
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TABLE I
QUANTITATIVE COMPARISON RESULTS FOR DIFFERENT SAMPLING

SETTINGS.

Metric Method 5(in) 10(in) 5(ex) 10(ex) 5(ori) 10(ori)

PSNR MPI [1] 26.57 22.87 25.41 22.70 31.98 26.28
Ours 30.29 26.01 28.01 23.66 34.43 29.53

SSIM MPI [1] 0.902 0.809 0.889 0.812 0.929 0.864
Ours 0.929 0.859 0.905 0.806 0.953 0.901

C. Comparison to SOTA

We conduct a comparative analysis with one state-of-the-
art algorithm MPI [1]. The superiority of MPI with regards to
other existing methods is presented in [1].

We design six sampling patterns to verify the effectiveness
of our method. The first two sampling settings are interpolation
within 5 frames and 10 frames respectively, in which the
frames on both ends are regarded as inputs and the other one as
the target. The middle two settings are the extrapolation within
5/10 frames, in which the first two adjacent frames are inputs
and the last one as the target. The final two settings randomly
choose two input frames and one target frame among a triplet,
similar to [1], which includes interpolation and extrapolation
within 5/10 frames. These settings are referred as ”5(in)”,
”10(in)”, ”5(ex)”,”10(ex)”, ”5(ori)” and ”10(ori)” respectively.

For fairness, we retrain a 64-layer MPI model using the
perception loss to enable its convergence. For the MPI method,
the quality of the synthesized view is heavily dependent
on the baseline width since the local pixel-correspondences
are provided only by PSVs. Thus the ambiguity caused by
repeated textures, occlusion boundaries, and non-Lambertian
surfaces couldn’t be handled well. Moreover, wilder baseline
will further deteriorate its performance. In addition, the layers
of uncertainty increase sampling for invalid areas, which is
particularly serious with wide baseline inputs. On the contrary,
geometric correspondences between different feature levels are
aggregated by our method, which could provide high quality
view synthesis results even with wide baseline inputs.

Table I shows quantitative comparisons between our method
and MPI. The results indicate that our method generates more
accurate synthesized views for both view interpolation and
extrapolation, especially for view interpolation with wide-
baseline inputs. However,the performance of our method de-
grades to a certain on 5(ex). Generally, the larger difference in
the content between the target view and the input views, the
more image regions not observed in both input views need to
be estimated from the neighborhoods. This results in repeated
textures in disoccluded areas from backward projection.

Qualitatively evaluations are shown in Fig. 4. Four different
scenarios are included. (a) Scenes containing fine structures
and repeated textures. The results of MPI show heavy artifacts
on the window frame and doorsteps while our result shows
fidelity in these areas. (b) Scenes containing varying occlusion
relations. The results of MPI shows repeated textures at the
boundaries of the pillar, sofa and treadmill. Our methods could
generate clear and sharp boundaries in these areas. (c) Scenes

Fig. 4. Qualitative comparison of rendered novel views. Different scenarios
are displayed from (a) to (d). For each subfigure, from top to bottom: input
pairs and estimated disparity map of the target view (the leftmost column);
ground truth, synthesized results of MPI and our method (the middle left
column); enlarged local regions from ground truth, synthesized results of MPI
and our method for more details (the middle right and rightmost columns).

containing non-Lambertian areas and repeated textures. The
results of MPI produce aliasing effects in the black single
sofa stool and the pillow areas with repeated texture, which
introduces ambiguity in the areas of large disparities. Our
method could handle this problem and generate more realistic
results. (d) Outdoor scenes with more complicated structures
and severe occlusions. Our method still outperforms MPI.

Given the ground truth, we can compute the L1 error map
for the reconstructed view. Fig. 5 demonstrates the compar-
isons between our method and MPI using L1 error maps.
Similar results validate the efficiency and robustness of the
proposed method for difficult scenes such as repeat textures,
occlusion boundaries and non-Lambertian areas.

D. Ablation Study

To prove the effectiveness of our method, we conduct an
ablation study. Three different strategies are considered: 1)
traditional cost aggregation, 2) without cost aggregation, and
3) without the confidence prior.

Traditional cost aggregation methods solely exploit the
aggregation of high-level features for cost volumes, while
ignoring low level details. Besides it is difficult for these
methods to convergence without depth supervision. For the
compared method without cost aggregation, we adopt a frame-
work similar to Unet, which includes an encoder and a
decoder. Although the Unet framework is capable of restoring
clear boundaries, it can’t reduce the ambiguity or uncertainty
arising from wide baselines without considering geometric
correspondence. Table II shows quantitative analysis results.
The complete model of the proposed method achieves the best
performance. The sampling setting is set to 10(ori).

Partial results are shown in Fig. 6. Since there exists serious
ambiguity in large disparity areas such as door edges, the sofa
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Fig. 5. Visual comparisons of rendered novel views with reconstruction error maps. From left to right: ground truth, estimated disparity map of the target
view, synthesized results of MPI and our method, reconstruction error maps of MPI and our method.

TABLE II
QUANTITATIVE COMPARISON RESULTS FOR ABLATION STUDY.

Methods PSNR SSIM
traditional cost aggreation 26.05 0.793

w/o cost aggreation 26.81 0.802
w/o confidence prior 27.00 0.868

complete model 29.53 0.901

with weak textures, and reflective photo frames, the incomplete
model without multi-scale cost aggregation tends to estimate
inaccurate depths. Moreover, ghost effects at occlusion bound-
aries occur in the absence of the prior guidance.

V. CONCLUSIONS AND FUTURE WORK

We propose a learning-based framework for view synthesis
from arbitrary sparse views with overlapping field of view
(FOV). By regarding depth estimation as a multi-scale cost
aggregation problem, the method could effectively reduce the
ambiguity or uncertainty arising from repeat textures, oc-
clusion boundaries and non-Lambertian surfaces and achieve
high-quality NVS results for both view interpolation and
extrapolation even in wide-baseline scenarios.

Currently we use a small amount of multiple scale lay-
ers and sampled layers. Also backward projection tends to
introduce effects for wild-baseline view extrapolation. More

efficient depth probability volumes and sophisticated warping
techniques could further improve the performance.
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