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Abstract. Video anomaly detection plays an increasingly crucial role in
intelligent surveillance systems. Inspired by previous unsupervised meth-
ods, this paper focuses on detecting frame-level anomalies with long-term
temporal dependencies. To this end, we propose a dual-scale temporal
dependency learning method for video anomaly detection model, which
consists of two main modules: a single-frame reconstruction module and
a multi-frame feature enhancement module, processed end-to-end with-
out relying on any pre-trained models. To validate the proposed ap-
proach, we introduce a new Elevator dataset containing various types
of remote temporal dependency anomalies. Experimental results on the
self-constructed Elevator dataset and two benchmarks demonstrate the
effectiveness of our proposed approach.

Keywords: Video anomaly detection · Unsupervised learning · Long
temporal dependency · Frame reconstruction.

1 Introduction

Video Anomaly Detection (VAD) is a high-level vision task utilizing computer
vision and machine learning technologies to identify frame-level anomalous be-
haviors or events within video footage. Traditional video surveillance systems
usually rely on manual intervention to identify anomalies, a method prone to
inefficiency and time-lag. Consequently, the emergence of automatic VAD tech-
niques addresses this gap by autonomously detecting anomalous behavior within
video streams, enabling timely detection and response to issues.

Unfortunately, it is extremely challenging to identify and locate anomalies in
a long video [3]. The one-class or unspervised learning setting has been widely
and successfully adopted for VAD due to the imbalance between normal and
anomaly events [28]. Note that, the term ’unsupervised’ used here refers to the
one-class classification strategy. Researchers rely on reconstructing a single video
frame or predicting future frames based on a few nearby frames to detect anoma-
lies within video data. During the process of reconstruction and prediction, these
methods learn normal patterns to differentiate anomalies during testing. How-
ever, such methods are incapable of detecting anomalies with long temporal
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Fig. 1. illustrates an example of remote temporal dependency anomalies. Individual
frames seem normal, however, the opposite conclusion can be easily derived by consid-
ering long-term temporal dependencies.

dependencies in a long video. An individual frame may seem normal, but the
oppsite conclusion can be easily derived considering other frames by extending
the temporal range. As shown in Fig. 1, it seems nothing unsual happens in each
individual frame. However, if longer temporal context is taken into considera-
tion: in (a), the elevator door opens, and a girl appears and is going to enter
the elevator; in (b), the girl stands at the entrance of the elevator, spreading her
arms to hold the elevator door; in (c), the little girl stands at the entrance of
the elevator. The transition from state (b) to (c) lasts for a long time (such as
several hundred frames), which poses a significant risk and indicates an anomaly
that can only be detected by considering long-term temporal dependencies.

To address the above limitation, we propose a novel video anomaly detec-
tion method leveraging dual-scale temporal dependency learning, which detects
both local anomalies and remote dependency anomalies at different temporal
scales. The multi-frame feature enhancement module learns features with longer
temporal ranges and relates them to detect anomalies with remote temporal de-
pendencies. The proposed method is evaluated on two large-scale benchmarks,
CUHK Avenue and ShanghaiTech. Furhtermore, we self-construct a challenging
Elevator dataset, comprising various anomalies with remote temporal dependen-
cies. To summarize, our contributions include:

—We propose a Dual-Scale Temporal Dependency Learning network
(DSTDL) for video anomaly detection, which is capable of detecting both local
and remote dependency anomalies at different temporal scales.

—We introduce a multi-frame feature enhancement module employing self-
attention and prototype pool to enhance remote temporal dependency learning.

—Experimental results on the self-constructed Elevator dataset, which com-
prises both short-term and long-term anomalies, show that the proposed method
outperforms the state of the arts, especially for long-term anomaly detetion.

2 Related Work

Unsupervised Video Anomaly Detection. Exisiting VAD methods are pri-
marily divided into two categories: unsupervised methods[14, 5, 23, 2, 7, 15] and
weakly supervised methods [24, 25]. Weakly supervised methods utilize video-
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level annotations or noisy labels. They often employ auxiliary information or
prior knowledge to assist anomaly detection. Within the unsupervised frame-
work or the one-class learning branch, methods based on reconstruction and
prediction are the two most representative paradigms in the current era of deep
neural network-based VAD.

Reconstruction-based methods typically employ deep autoencoders to learn
to reconstruct input frames, considering frames with significant reconstruction
errors as anomalies. Song et al.[23], Gong et al.[5], and Chen et al.[2] all explore
different approaches to enhance autoencoders (AEs) for anomaly detection. The
utilization of attention mechanisms in AEs, as highlighted by Song et al.[23] and
Li et al.[11], provides significant benefits by selectively focusing on relevant fea-
tures during encoding and decoding processes. Prediction based methods learn
to predict missing frames, such as future frame prediction [4, 12, 17] or mid-
dle frame completion [9, 27]. The proposed method in this work belongs to the
reconstruction-based unsupervised branch. Unlike previous reconstruction-based
methods that struggle with detecting long-term dependency anomalies, our ap-
proach conducts frame reconstruction at different temporal scales. This allows
for detection of both localized anomalies and temporal dependencies occurring
over longer time spans.

Spatiotemporal Relationship Modeling. Currently, spatiotemporal re-
lationship modeling has found numerous applications across diverse domains,
including target detection [8], behavior recognition [13, 19], and beyond. For in-
stance, Li et al. [10] extend relation modeling from the spatial domain to the
spatio-temporal domain by incorporating an existing video temporal relation
network, enabling the encoding of spatio-temporal dynamics within the video.
Hao et al. [6] present a spatiotemporal consistency enhanced network to gener-
ate spatio-temporal consistency predictions. Wang et al. [26] propose to detect
anomalies by analyzing the spatio-temporal relationships among objects. Differ-
ent from these methods, our approach employs a distinct strategy by separately
addressing spatio-temporal relationships across two temporal scales, local and
remote temporal ranges.

Prototype Pool. Prototypical learning aims to represent each class or cat-
egory by a prototypical feature vector computed from the features of its con-
stituent instances, providing benefits such as robustness, interpretability, effi-
ciency, and adaptability. For image classification, prototypes can serve as cen-
troids or representatives of their respective classes in the feature space [22].
For action recognition, features of a video at different timestamps can be aver-
aged to represent the video [21]. Previous methods focused on learning spatial
prototype representations of single-frame features when using a prototype pool
[17]. However, in our approach, each prototype is utilized to represent a class of
generic continuous behavioral characteristics within a remote temporal domain.
The prototype pool is employed to aggregate a series of generic continuous be-
havioral characteristics in normal videos, placing greater emphasis on learning
spatio-temporal prototype representations within a long-term temporal range.
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3 Methodology

In this section, we first present the overall process of the proposed unsupervised
video anomaly detection method based on dual-scale learning in Section 3.1.
Then, in Section 3.2, we describe the single-frame reconstruction module. Section
3.3 introduces the multi-frame feature enhancement module. Finally, in Section
3.4, we discuss the computation and composition of anomaly scores.

Fig. 2. The overall pipeline of our proposed DSTDL network.

3.1 Overview

The overall pipeline of our proposed DSTDL network is shown in Fig. 2. Given
an input video V , we first partition V into a series of non-overlapping video
segments {vi}Si=1 follow the temporal order, where S represents the number of
video segments. Each video segment comprises an equal number of video frames,
denoted by X = {Xt}Tt=1 ∈ RB×T×C×H×W , where B, T,C,H,W represent the
batch size, the number of video frames, the number of channels, the image height
and width, respectively. Our DSTDL primarily consists of two components: the
single-frame reconstruction module and the multi-frame feature en-
hancement module.

3.2 Single-frame Reconstruction Module

Inspired by the work [17], we employ autoencoders for single frame reconstruc-
tion. Specially, to enhance the discrimination between normal and abnormal
frames, we introduce a re-sampling sub-module similar to [6] after the encoder,
which maps the spatial distribution of encoded features to another feature space.
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Firstly, the data is encoded along the channel dimension, which is akin to
a downsampling process involving multiple convolution and pooling operations.
This encoding process serves as a preliminary feature extraction step:

XE = E(X), (1)

where E(·) denotes the encoder, and XE represents the encoded features. The
re-sampling sub-module maps the spatial distribution of XE from the source
feature space v to the destination space z and obtain the re-sampled features:

X̂E = ReS(XE) : {v → z}, (2)

where the latent feature space v is assumed to be Gaussian distributed N(µ,σ2),
z = µ+λσ takes a similar distribution to v, and λ ∼ N(0, 1) is an auxiliary noise
parameter. Specifically, two fully connected layers are utilized to compute the
mean µ and the standard deviation σ of the Gaussian distribution. To constrain
the re-sampling process, the Kullback-Leibler divergence is employed to ensure
the similarity between the source and the destination distributions:

Lc = KL(N(µ,σ2), N(0, 1)) = −1

2
(1 + logσ2 − µ2 − σ2). (3)

Then, X̂E is passed to the decoding part, which is akin to an upsampling
process involving multiple deconvolution operations. This can be represented as:

XD = D(X̂E), (4)

where XD represents the decoded features, and D(·) denotes the decoder. The
reconstructed video frames are finally obtained by passing the decoded features
XD through an output head, denoted as Θ1. The output head is composed of
multiple layers of convolution and activation functions:

X̂1 = Θ1(XD), (5)

where X̂1 represents the reconstructed frames by the single-frame reconstruction
module. The entire module is constrained by the mean squared error loss to
achieve accurate frame reconstruction:

Lr =
1

HW

∑
h,w

∥X̂1 −X∥22. (6)

3.3 Multi-frame Feature Enhancement Module

The intermediate results of the single-frame reconstruction module XE and XD

are taken as input and fed into the multi-frame feature enhancement module.
This module comprises three parts: stacked feature enhancement sub-modules,
a prototype pool, and an output head.
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Fig. 3. Detailed structure of the feature enhancement sub-module.

Firstly, XE and XD are togethor passed into several sequentially stacked
feature enchancement blocks for expanding the temporal range taken into con-
sideration. As shown in Fig. 3, a single feature augmentation block includes
three parts: global pooling, self-attention and feature fusion. Global pooling in-
volves pooling the encoded features XE along the channel, length, and width
dimensions, retaining only the temporal dimension unchanged:

−→
XT

g = GP (XE), (7)

where GP (·) represents the global average pooling operation, and XT
g ∈ RB×T

represents the result after pooling over the current T frames. The pooled result
is concatenated with the corresponding result from the previous iteration:

←→
X 2T

g = concat
(←−
X−T

g ,
−→
XT

g

)
,

←→
X 2T

D = concat
(←−
X−T

D ,
−→
XT

D

)
,

(8)

where
←−
X−T

g represents the result after pooling over the previous T frames,
←→
X 2T

g ∈ RB×2T represents the concatenated result of the previous T frames

and the current T frames,
−→
XT

D,
←−
X−T

D and
←→
X 2T

D have similar representations for
the decoded feature XD.

These concatenated features are subsequently fed into a self-attention block
to calculate a correlation matrix capturing context information from the preced-
ing T frames to the succeeding T frames:

A2T
att = SA(

←→
X 2T

g ), (9)
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where SA(·) represents the self-attention operation, and A2T
att ∈ RB×2T×2T rep-

resents the correlation matrix obtained for the 2T frames. This correlation matrix
is further multiplied with the decoded features

←→
X 2T

D to obtain the fused features:

X2T
FUD = A2T

att ∗
←→
X 2T

D . (10)

Similarly, as shown in Fig. 3, the fused encoded feature X2T
FUE can be cal-

culated uisng X2T
FUE = A2T

att ∗
←→
X 2T

g . Throught the integration of the correlation
matrix, which encapsulates context information spanning two adjacent video seg-
ments, the fused features undergo enhancement. This single-layer enhancement
block is stacked multiple times to boost performance:

XF = {FAi(XE ,XD)}Zi=1, (11)

where FAi(·, ·) represents the i-th single-layer feature enhancement operation, Z
denotes the iteration of the feature enhancement module for Z repetitions, and
XF is the features obtained by the stacked feature enhancement sub-modules.
The feature enhancement operation is propagated continuously along the tem-
poral axis (in the direction of increasing time), enabling the incorporation of a
broader range of contextual information in the time domain. This facilitates the
accurate detection of long-term temporal dependency anomalies.

Inspired by work [17], we used a prototype pool based on temporal informa-
tion. After enhancement, the prototypes are obtained from the fused features
XF :

pm
t =

N∑
n=1

wn,m
t∑N

n′=1 w
n′,m
t

xn
t , (12)

whereN =W ∗H,XF = {x1
t ,x

2
t , ...,x

N
t }Tt=1, and xn

t ∈ Rc. Within the Attention
sub-process, M attention mapping functions {ψm : Rc → R}Mm=1 are used to al-
locate contextual weights to the encoded vectors, here, wn,m

t ∈Wm
t = ψm(XF ).

A collection of N encoded vectors forms a prototype pm
t ∈ Rc andM prototypes

constitute the prototype pool P t = {pm
t }Mm=1. During training, both the simi-

larity loss Ls and the diversity loss Ld are employed for generating prototypes:

Ls =
1

N

N∑
n=1

∥xn
t − p∗

t ∥2, (13)

Ld =
2

M(M − 1)

M∑
m=1

M∑
m′=1

[−∥pm − pm′∥2]. (14)

Note that in the retrieval sub-process, the enhanced vector xn
t is utilized as a

query to retrieve relevant items from the prototype pool. The retrieved relevant

prototypes are then used to reconstruct the normalcy encoding X̃T , of which
each normalcy encoding vector x̃n

t is calculated as follows:
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x̃n
t =

M∑
m=1

βn,m
t pm

t , (15)

where βn,m
t =

xn
t p

m
t∑M

m′=1
xn

t p
m′
t

represents the correlation score between the n-th

vector xn
t and the m-th prototype item pm

t . The normalcy encoding X̃T is then

transformed into reconstructed video frames X̂2 throught an output head Θ2,
which is composed of multiple layers of convolution and activation functions:

X̂2 = Θ2(X̃T ). (16)

Similar to the reconstruction loss Lm for the single-frame reconsruction mod-
ule, defined in Eq. 6, the multi-frame feature enhancement module is also sub-
jected to a mean squared error loss constraint to achieve frame reconstruction,
which can be described as follows:

Lm =
1

HW

∑
h,w

∥X̂2 −X∥22. (17)

Therefore, the total loss Lt is defined as follows:

Lt = λ1 ∗ Lc + λ2 ∗ Lr + λ3 ∗ Ls + λ4 ∗ Ld + λ5 ∗ Lm, (18)

where λ1, λ2, λ3, λ4 and λ5 represent the weighting coefficients for corresponding
loss terms, respectively.

3.4 Anomaly Score

The PSNR (Peak Signal-to-Noise Ratio) metric is calculated based on the re-

constructed frame X̂ and the ground truth X as follows:

PSNR(X, X̂) = 10log
[max(X̂)]2

1
N

∑N
i=0(Xi − X̂i)2

. (19)

After normalizing the obtained PSNR values across the entire video, the
anomaly score s for each video frame could be derived as follows:

s =
PSNR(X, X̂)−mint PSNR(X, X̂)

maxt PSNR(X, X̂)−mint PSNR(X, X̂)
. (20)

The anomaly scores for an individual reconstructed frame from X̂1 and X̂2

are calculated according to Eqs. 19 and 20, respectively. Then a weighted sum
st for the frame at time t is obtained as follows:

st = αs1 + (1− αs2), (21)

where s1 and s2 represent the anomaly scores for individual reconstructed frame

from X̂1 and X̂2 respectively, and α denotes the weighting coefficient.
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4 Experiments

4.1 Datasets and Evaluation Metrics

We consider two benchmarks in our analysis, CUHK Avenue [14] and Shang-
haiTech [16]. Avenue has 37 videos, including 16 training videos and 21 test
videos, respectively. It includes a total number of 47 abnormal events with
throwing bag and moving toward/away from the camera being example anoma-
lies. Each video has a resolution of 360×640 RGB pixels. ShanghaiTech has 437
videos, including 307 normal videos and 130 anomaly videos, all collected under
13 different scenes with complex shooting angles. Each video has a resolution of
480×856 RGB pixels.

Furthermore, we self-construct a dataset comprising 192 surveillance videos
(≈190 minutes) recorded inside elevators within residential complexes. The El-
evator dataset consists of 169 normal training videos and 23 anomaly testing
videos, of which eash video has a resolution of 1920× 1080 RGB pixels. A total
of 8 types of abnormal events are considered, including animal in the elevator,
electrics vehicle in the elevator, suspected weapon, large cargo, smoking, absence
of individual when the elevator door opens, passenger holding the elevator door
for an extended period, and passenger continuously moving around.

Following [17], we compute the Area Under the Curve (AUC) of the frame-
level receiver operating characteristics (ROC) as the main metric to evaluate the
performance of our proposed method and comparison methods, where a larger
AUC value implies better distinguishing ability.

4.2 Implementation Details

For training, all the videos are divided into 20 segments (S = 20), with each
segment containing 10 frames (T = 10). For Elevator, each video comprises
200 frames. While for Avenue and ShanghaiTech, each training video undergoes
average downsampling to maintain 200 frames. Input frames are resized to the
resolution of 224× 224 and normalized to the range of [-1, 1] following [17]. The
encoder and decoder in the single-frame reconstruction module use the same
settings as in [17]. The size of the prototype pool for the multi-frame feature
enhancement module is set to 10 (M = 10). The weighting coefficient α for
calculating the final anomaly score is set to 0.5. The coefficients λ1, λ2, λ3, λ4
and λ5 for the loss function are set to 1, 1, 1, 0.0001 and 1, respectively (where
the values for coefficients λ2, λ3 and λ4 are referenced from [17]). All hyper-
parameters remain consistent across three datasets.

We train our network on two NVIDIA RTX-2080Ti GPUs using PyTorch
and trained in an end-to-end manner. The learning rates are set to 1e-5, 1e-4,
1e-4 for Elevator, Avenue and ShanghaiTech, respectively.

4.3 Comparisons with State-Of-The-Art (SOTA)

We implement a full convolutional encoder-decoder video anomaly detection
method with a prototype pool as the baseline, similar to the work presented
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Table 1. Performance comparison with existing SOTA methods on Avenue, Shang-
haiTech and Elevator datasets. The best performance is bold, while the 2nd and 3rd
performances are underlined.

Methods Avenue ShanghaiTech Elevator

MemAE[5] 83.3 71.2 -
Stacked RNN[16] 81.7 68.0 -

Conv-AE[7] 70.2 60.9 -
ConvLSTM-AE[15] 77.0 - -

AMC[18] 86.9 - -
CDDA[1] 86.0 73.3 -
MNAD[20] 82.8 69.8 60.4
MPN[17] 84.0 66.7 63.4
Ours 85.7 70.5 76.5

Table 2. Ablation analysis of loss terms on Elevator dataset.

Lc Lr Ls Ld Lm AUC(%)

✓ ✓ 67.82
✓ ✓ ✓ ✓ 71.28

✓ ✓ ✓ ✓ 57.75
✓ ✓ ✓ ✓ 72.35
✓ ✓ ✓ ✓ 70.28
✓ ✓ ✓ ✓ 68.92
✓ ✓ ✓ ✓ ✓ 76.51

in [17]. Moreover, our method is compared with several reconstruction-based
unsupervised works [5, 16, 7, 15, 18, 1, 20]. Some methods are not compared on
Elevator dataset due to the lack of publicly released codes from their authors.
As shown in Table 1, although our method cannot achieve the optimal per-
formance on Avenue and ShanghaiTech datasets, our method achieves improve-
ments of 1.7% and 3.8% over the baseline, respectively. Furthermore, our method
achieves a 13.1% improvement compared to the baseline on Elevator dataset. Ad-
ditional details can be found in the supplementary material. Compared to the
proposed method, without the multi-frame feature enhancement and reconstruc-
tion branch, the baseline shows a significant decline in long-term dependency
anomaly detection.

4.4 Ablation Study

We conduct ablation studies to validate the effectiveness of the loss terms in our
DSTDL on Elevator dataset. The total loss function comprises the resampling
loss, the single-frame reconstruction loss, the similarity loss, the diversity loss
and the multi-frame reconstruction loss. As shown in Table 2, the multi-frame
reconstruction loss enhances the model’s awareness of long-term temporal depen-
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dencies, thus introduces a nearly 7.59% AUC improvement on Elevator dataset.
From the table, we can also see that the single-frame reconstruction loss plays an
important role. The single-frame reconstruction module has a good detection of
abnormal pedestrian movement. At the same time, the input of the multi-frame
module depends on the output of the encoder and decoder of the single-frame
module. In addition, combing all the loss terms together can further improve the
performance, indicating their compatibility in video anomaly detection.

Fig. 4. Analysis of the effects of the key hyperparameters of DSTDL on Elevator
dataset. From left to right: the number of stacked blocks of the single-frame feature
enhancement module (Z), the weighted sum parameters of the anomaly score (α), the
prototype pool size (M), and the number of frames per video segment (T ).

4.5 Robustness Analysis

To enhance the features extracted from a larger temporal scale, the single-layer
enhancement block is stacked multiple times to boost performance. To investi-
gate the effect of the number of stacked blocks, denoted as Z in Eq. 11 , we carry
out experiments on different numbers of stacked blocks on Elevator dataset. The
results are showed in Fig. 4. Based on the results, Z = 3 is an appropriate num-
ber of stacked blocks. We set α to 0.5 in the experiment.

The anomaly score for an individual frame is a weighted sum of the anomaly
scores obtained from the reconstructed frames by two branches of our proposed
DSTDL network. To analyze the influence of the weighting coefficient α on the
VAD performance, we also carry out experiments on different values of α on
Elevator dataset. From the results showed in Fig. 4, when α = 0.5 the proposed
method achieves a highest AUC value. We set Z to 3 in the experiment.

In addition, we conduct experiments to verify the influence of the prototype
pool size (M) on the multi-frame feature enhancement module, as well as the
effect of the number of frames per video segment (T ) on anomaly detection per-
formance. As shown in Fig. 4, our proposed DSTDL achieves the hightest AUC
values when M = 10 and T = 10, respectively. Note that in each experiment,
we vary only the parameter under study, keeping all other variables unchanged
to isolate its specific impact.
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Fig. 5. Anomaly Score Curves for Video 008 on Elevator dataset. Frame 5 indicates
a person entering the elevator and preparing to press the floor button, Frame 100
indicates the passanger continuously pressing the elevator button, Frame 310 indicates
another person entering the elevator, and Frame 360 indicates the elevator preparing to
close. The red dots on the curves indicate the sampled video frames. Pink background
represents the ground truth.

4.6 Visualization Analysis

In Fig. 5, we illustrate three anomaly score curves for V ideo 008 from the El-
evator dataset: single-frame reconstruction module (orange), multi-frame fea-
ture enhancement module (green), and the overall anomaly score curve (blue).
V ideo 008 presents the passenger holding the elevator door for an extended pe-
riod anomaly. While there are no apparent anomalous behaviors when observing
each individual video frame separately, expanding the time window to encom-
pass the period from someone entering the elevator until the door eventually
closes reveals anomalies. From the graph, it is evident that the single-frame re-
construction module detects passanger movement effectively, yet its performance
diminishes when faced with prolonged static anomalies. Conversely, our multi-
frame feature enhancement module demonstrates excellent detection capabilities
for such anomalies. Additional details can be found in the supplementary mate-
rial.

From the visualization analysis, it is evident that the multi-frame feature
enhancement module effectively detects frame-level anomalies with distant tem-
poral dependencies. By combining both modules, anomalies spaning various tem-
poral ranges can be identified proficiently with a single framework. Currently,
we stick to the strategy of computing a weighted average to keep the overall ap-
praoch as simple as possible. More advanced fusion strategies could be explored
in furure work.
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5 Conclusion

In this work, we propose a Dual-Scale Temporal Dependency Learning network
for video anomaly detection, which is capable of detecting both local and remote
dependency anomalies at different temporal scales. We introduce a new Eleva-
tor dataset containing various types of remote temporal dependency anomalies
to validate the proposed approach. Experimental results on the self-constructed
Elevator dataset and two benchmarks demonstrate the effectiveness of our pro-
posed approach.
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